__copyright__ = "Copyright (C) 2012 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import sys import numpy as np import pytest from arraycontext import pytest_generate_tests_for_array_contexts from boxtree.array_context import ( PytestPyOpenCLArrayContextFactory, _acf, # noqa: F401 ) from boxtree.tools import make_normal_particle_array logger = logging.getLogger(__name__) pytest_generate_tests = pytest_generate_tests_for_array_contexts([ PytestPyOpenCLArrayContextFactory, ]) # {{{ bounding box test @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("dims", [2, 3]) @pytest.mark.parametrize("nparticles", [9, 4096, 10**5]) def test_bounding_box(actx_factory, dtype, dims, nparticles): actx = actx_factory() from boxtree.bounding_box import BoundingBoxFinder from boxtree.tools import AXIS_NAMES bbf = BoundingBoxFinder(actx.context) axis_names = AXIS_NAMES[:dims] logger.info("%s - %s %s", dtype, dims, nparticles) particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) bbox_min = [np.min(actx.to_numpy(x)) for x in particles] bbox_max = [np.max(actx.to_numpy(x)) for x in particles] bbox_cl, _evt = bbf(particles, radii=None) bbox_cl = actx.to_numpy(bbox_cl) bbox_min_cl = np.empty(dims, dtype) bbox_max_cl = np.empty(dims, dtype) for i, ax in enumerate(axis_names): bbox_min_cl[i] = bbox_cl[f"min_{ax}"] bbox_max_cl[i] = bbox_cl[f"max_{ax}"] assert np.all(bbox_min == bbox_min_cl) assert np.all(bbox_max == bbox_max_cl) # }}} # {{{ test basic (no source/target distinction) tree build def run_build_test(builder, actx, dims, dtype, nparticles, visualize, max_particles_in_box=None, max_leaf_refine_weight=None, refine_weights=None, **kwargs): dtype = np.dtype(dtype) if dtype == np.float32: tol = 1e-4 elif dtype == np.float64: tol = 1e-12 else: raise RuntimeError(f"unsupported dtype: {dtype}") logger.info(75 * "-") if max_particles_in_box is not None: logger.info("%dD %s - %d particles - max %d per box - %s", dims, dtype.type.__name__, nparticles, max_particles_in_box, " - ".join(f"{k}: {v}" for k, v in kwargs.items())) else: logger.info("%dD %s - %d particles - max leaf weight %d - %s", dims, dtype.type.__name__, nparticles, max_leaf_refine_weight, " - ".join(f"{k}: {v}" for k, v in kwargs.items())) logger.info(75 * "-") particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") actx.queue.finish() tree, _ = builder(actx.queue, particles, max_particles_in_box=max_particles_in_box, refine_weights=refine_weights, max_leaf_refine_weight=max_leaf_refine_weight, debug=True, **kwargs) tree = tree.get(queue=actx.queue) sorted_particles = np.array(list(tree.sources)) unsorted_particles = np.array([actx.to_numpy(pi) for pi in particles]) assert np.all(sorted_particles == unsorted_particles[:, tree.user_source_ids]) if refine_weights is not None: refine_weights_reordered = ( actx.to_numpy(refine_weights)[tree.user_source_ids]) all_good_so_far = True if visualize: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() from boxtree import box_flags_enum as bfe scaled_tol = tol*tree.root_extent for ibox in range(tree.nboxes): # Empty boxes exist in non-pruned trees--which themselves are undocumented. # These boxes will fail these tests. if not (tree.box_flags[ibox] & bfe.IS_SOURCE_OR_TARGET_BOX): continue extent_low, extent_high = tree.get_box_extent(ibox) assert np.all(extent_low >= tree.bounding_box[0] - scaled_tol), ( ibox, extent_low, tree.bounding_box[0]) assert np.all(extent_high <= tree.bounding_box[1] + scaled_tol), ( ibox, extent_high, tree.bounding_box[1]) center = tree.box_centers[:, ibox] for _, bbox_min, bbox_max in [ ( "source", tree.box_source_bounding_box_min[:, ibox], tree.box_source_bounding_box_max[:, ibox]), ( "target", tree.box_target_bounding_box_min[:, ibox], tree.box_target_bounding_box_max[:, ibox]), ]: assert np.all(extent_low - scaled_tol <= bbox_min) assert np.all(bbox_min - scaled_tol <= center) assert np.all(bbox_max - scaled_tol <= extent_high) assert np.all(center - scaled_tol <= bbox_max) start = tree.box_source_starts[ibox] box_children = tree.box_child_ids[:, ibox] existing_children = box_children[box_children != 0] assert (tree.box_source_counts_nonchild[ibox] + np.sum(tree.box_source_counts_cumul[existing_children]) == tree.box_source_counts_cumul[ibox]) box_particles = sorted_particles[:, start:start+tree.box_source_counts_cumul[ibox]] good = ( (box_particles < extent_high[:, np.newaxis] + scaled_tol) & (extent_low[:, np.newaxis] - scaled_tol <= box_particles)) all_good_here = np.all(good) if visualize and not all_good_here and all_good_so_far: pt.plot( box_particles[0, np.where(~good)[1]], box_particles[1, np.where(~good)[1]], "ro") plotter.draw_box(ibox, edgecolor="red") if not all_good_here: print("BAD BOX", ibox) if not (tree.box_flags[ibox] & bfe.HAS_SOURCE_OR_TARGET_CHILD_BOXES): # Check that leaf particle density is as promised. nparticles_in_box = tree.box_source_counts_cumul[ibox] if max_particles_in_box is not None: if nparticles_in_box > max_particles_in_box: print("too many particles " f"({nparticles_in_box} > {max_particles_in_box}); box {ibox}") all_good_here = False else: assert refine_weights is not None box_weight = np.sum( refine_weights_reordered[start:start+nparticles_in_box]) # pylint: disable=possibly-used-before-assignment # noqa: E501 if box_weight > max_leaf_refine_weight: print("refine weight exceeded " f"({box_weight} > {max_leaf_refine_weight}); box {ibox}") all_good_here = False all_good_so_far = all_good_so_far and all_good_here if visualize: pt.gca().set_aspect("equal", "datalim") pt.show() assert all_good_so_far def particle_tree_test_decorator(f): f = pytest.mark.opencl(f) f = pytest.mark.parametrize("dtype", [np.float64, np.float32])(f) f = pytest.mark.parametrize("dims", [2, 3])(f) return f @particle_tree_test_decorator def test_single_box_particle_tree(actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) run_build_test(builder, actx, dims, dtype, 4, max_particles_in_box=30, visualize=visualize) @particle_tree_test_decorator def test_two_level_particle_tree(actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) run_build_test(builder, actx, dims, dtype, 50, max_particles_in_box=30, visualize=visualize) @particle_tree_test_decorator def test_unpruned_particle_tree(actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) # test unpruned tree build run_build_test(builder, actx, dims, dtype, 10**5, visualize=visualize, max_particles_in_box=30, skip_prune=True) @particle_tree_test_decorator def test_particle_tree_with_reallocations( actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) run_build_test(builder, actx, dims, dtype, 10**5, max_particles_in_box=30, visualize=visualize, nboxes_guess=5) @particle_tree_test_decorator def test_particle_tree_with_many_empty_leaves( actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) run_build_test(builder, actx, dims, dtype, 10**5, max_particles_in_box=5, visualize=visualize) @particle_tree_test_decorator def test_vanilla_particle_tree(actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) run_build_test(builder, actx, dims, dtype, 10**5, max_particles_in_box=30, visualize=visualize) @particle_tree_test_decorator def test_explicit_refine_weights_particle_tree( actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) nparticles = 10**5 rng = np.random.default_rng(10) refine_weights = actx.from_numpy( rng.integers(1, 10, (nparticles,), dtype=np.int32) ) run_build_test(builder, actx, dims, dtype, nparticles, refine_weights=refine_weights, max_leaf_refine_weight=100, visualize=visualize) @particle_tree_test_decorator def test_non_adaptive_particle_tree(actx_factory, dtype, dims, visualize=False): actx = actx_factory() from boxtree import TreeBuilder builder = TreeBuilder(actx.context) run_build_test(builder, actx, dims, dtype, 10**4, max_particles_in_box=30, visualize=visualize, kind="non-adaptive") # }}} # {{{ source/target tree @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_source_target_tree(actx_factory, dims, visualize=False): actx = actx_factory() nsources = 2 * 10**5 ntargets = 3 * 10**5 dtype = np.float64 sources = make_normal_particle_array(actx.queue, nsources, dims, dtype, seed=12) targets = make_normal_particle_array(actx.queue, ntargets, dims, dtype, seed=19) if visualize: import matplotlib.pyplot as pt np_sources, np_targets = actx.to_numpy(sources), actx.to_numpy(targets) pt.plot(np_sources[0], np_sources[1], "rx") pt.plot(np_targets[0], np_targets[1], "g+") pt.show() from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, sources, targets=targets, max_particles_in_box=10, debug=True) tree = tree.get(queue=actx.queue) sorted_sources = np.array(list(tree.sources)) sorted_targets = np.array(list(tree.targets)) unsorted_sources = np.array([actx.to_numpy(pi) for pi in sources]) unsorted_targets = np.array([actx.to_numpy(pi) for pi in targets]) assert np.all(sorted_sources == unsorted_sources[:, tree.user_source_ids]) user_target_ids = np.empty(tree.ntargets, dtype=np.intp) user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp) assert np.all(sorted_targets == unsorted_targets[:, user_target_ids]) all_good_so_far = True if visualize: from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.set_bounding_box() tol = 1e-15 for ibox in range(tree.nboxes): extent_low, extent_high = tree.get_box_extent(ibox) assert np.all(extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent), ibox assert np.all(extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent), ibox src_start = tree.box_source_starts[ibox] tgt_start = tree.box_target_starts[ibox] box_children = tree.box_child_ids[:, ibox] existing_children = box_children[box_children != 0] assert (tree.box_source_counts_nonchild[ibox] + np.sum(tree.box_source_counts_cumul[existing_children]) == tree.box_source_counts_cumul[ibox]) assert (tree.box_target_counts_nonchild[ibox] + np.sum(tree.box_target_counts_cumul[existing_children]) == tree.box_target_counts_cumul[ibox]) for what, particles in [ ("sources", sorted_sources[:, src_start:src_start+tree.box_source_counts_cumul[ibox]]), ("targets", sorted_targets[:, tgt_start:tgt_start+tree.box_target_counts_cumul[ibox]]), ]: good = np.all( (particles < extent_high[:, np.newaxis] + tol) & (extent_low[:, np.newaxis] - tol <= particles), axis=0) all_good_here = np.all(good) if visualize and not all_good_here: pt.plot( particles[0, np.where(~good)[0]], particles[1, np.where(~good)[0]], "ro") plotter.draw_box(ibox, edgecolor="red") pt.show() if not all_good_here: print("BAD BOX %s %d" % (what, ibox)) all_good_so_far = all_good_so_far and all_good_here assert all_good_so_far if visualize: pt.gca().set_aspect("equal", "datalim") pt.show() # }}} # {{{ test sources/targets-with-extent tree @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) @pytest.mark.parametrize("extent_norm", ["linf", "l2"]) def test_extent_tree(actx_factory, dims, extent_norm, visualize=False): actx = actx_factory() nsources = 100000 ntargets = 200000 dtype = np.float64 npoint_sources_per_source = 16 sources = make_normal_particle_array(actx.queue, nsources, dims, dtype, seed=12) targets = make_normal_particle_array(actx.queue, ntargets, dims, dtype, seed=19) refine_weights = actx.zeros(nsources + ntargets, np.int32) refine_weights[:nsources] = 1 rng = np.random.default_rng(13) source_radii = actx.from_numpy( 2**rng.uniform(-10, 0, (nsources,)).astype(dtype) ) target_radii = actx.from_numpy( 2**rng.uniform(-10, 0, (ntargets,)).astype(dtype) ) from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() dev_tree, _ = tb(actx.queue, sources, targets=targets, source_radii=source_radii, target_radii=target_radii, extent_norm=extent_norm, refine_weights=refine_weights, max_leaf_refine_weight=20, # max_particles_in_box=10, # Set artificially small, to exercise the reallocation code. nboxes_guess=10, debug=True, stick_out_factor=0) logger.info("transfer tree, check orderings") tree = dev_tree.get(queue=actx.queue) if visualize: import matplotlib.pyplot as pt np_sources, np_targets = actx.to_numpy(sources), actx.to_numpy(targets) pt.plot(np_sources[0], np_sources[1], "rx") pt.plot(np_targets[0], np_targets[1], "g+") from boxtree.visualization import TreePlotter plotter = TreePlotter(tree) plotter.draw_tree(fill=False, edgecolor="black", zorder=10) plotter.draw_box_numbers() plotter.set_bounding_box() pt.gca().set_aspect("equal", "datalim") pt.show() sorted_sources = np.array(list(tree.sources)) sorted_targets = np.array(list(tree.targets)) sorted_source_radii = tree.source_radii sorted_target_radii = tree.target_radii unsorted_sources = np.array([actx.to_numpy(pi) for pi in sources]) unsorted_targets = np.array([actx.to_numpy(pi) for pi in targets]) unsorted_source_radii = actx.to_numpy(source_radii) unsorted_target_radii = actx.to_numpy(target_radii) assert np.all(sorted_sources == unsorted_sources[:, tree.user_source_ids]) assert np.all(sorted_source_radii == unsorted_source_radii[tree.user_source_ids]) # {{{ test box structure, stick-out criterion logger.info("test box structure, stick-out criterion") user_target_ids = np.empty(tree.ntargets, dtype=np.intp) user_target_ids[tree.sorted_target_ids] = np.arange(tree.ntargets, dtype=np.intp) if ntargets: assert np.all(sorted_targets == unsorted_targets[:, user_target_ids]) assert np.all(sorted_target_radii == unsorted_target_radii[user_target_ids]) all_good_so_far = True # {{{ check sources, targets assert np.sum(tree.box_source_counts_nonchild) == nsources assert np.sum(tree.box_target_counts_nonchild) == ntargets for ibox in range(tree.nboxes): kid_sum = sum( tree.box_target_counts_cumul[ichild_box] for ichild_box in tree.box_child_ids[:, ibox] if ichild_box != 0) assert ( tree.box_target_counts_cumul[ibox] == ( tree.box_target_counts_nonchild[ibox] + kid_sum)), ibox for ibox in range(tree.nboxes): extent_low, extent_high = tree.get_box_extent(ibox) assert np.all(extent_low >= tree.bounding_box[0] - 1e-12*tree.root_extent), ibox assert np.all(extent_high <= tree.bounding_box[1] + 1e-12*tree.root_extent), ibox box_children = tree.box_child_ids[:, ibox] existing_children = box_children[box_children != 0] assert (tree.box_source_counts_nonchild[ibox] + np.sum(tree.box_source_counts_cumul[existing_children]) == tree.box_source_counts_cumul[ibox]) assert (tree.box_target_counts_nonchild[ibox] + np.sum(tree.box_target_counts_cumul[existing_children]) == tree.box_target_counts_cumul[ibox]) del existing_children del box_children for ibox in range(tree.nboxes): lev = int(tree.box_levels[ibox]) box_radius = 0.5 * tree.root_extent / (1 << lev) box_center = tree.box_centers[:, ibox] extent_low = box_center - box_radius extent_high = box_center + box_radius stick_out_dist = tree.stick_out_factor * box_radius radius_with_stickout = (1 + tree.stick_out_factor) * box_radius for what, starts, counts, points, radii in [ ("source", tree.box_source_starts, tree.box_source_counts_cumul, sorted_sources, sorted_source_radii), ("target", tree.box_target_starts, tree.box_target_counts_cumul, sorted_targets, sorted_target_radii), ]: bstart = starts[ibox] bslice = slice(bstart, bstart+counts[ibox]) check_particles = points[:, bslice] check_radii = radii[bslice] if extent_norm == "linf": good = np.all( (check_particles + check_radii < extent_high[:, np.newaxis] + stick_out_dist) & # noqa: W504 (extent_low[:, np.newaxis] - stick_out_dist <= check_particles - check_radii), axis=0) elif extent_norm == "l2": center_dists = np.sqrt( np.sum( (check_particles - box_center.reshape(-1, 1))**2, axis=0)) good = ( (center_dists + check_radii)**2 < dims * radius_with_stickout**2) else: raise ValueError(f"unexpected value of extent_norm: '{extent_norm}'") all_good_here = np.all(good) if not all_good_here: print("BAD BOX %s %d level %d" % (what, ibox, tree.box_levels[ibox])) all_good_so_far = all_good_so_far and all_good_here assert all_good_here # }}} assert all_good_so_far # }}} # {{{ create, link point sources logger.info("creating point sources") from pytools.obj_array import make_obj_array point_sources = make_obj_array([ actx.from_numpy( unsorted_sources[i][:, np.newaxis] + unsorted_source_radii[:, np.newaxis] * rng.uniform(-1, 1, size=(nsources, npoint_sources_per_source)) ) for i in range(dims)]) point_source_starts = actx.from_numpy( np.arange( 0, (nsources + 1) * npoint_sources_per_source, npoint_sources_per_source, dtype=tree.particle_id_dtype) ) from boxtree.tree import link_point_sources dev_tree = link_point_sources(actx.queue, dev_tree, point_source_starts, point_sources, debug=True) # }}} # }}} # {{{ leaves to balls query test @pytest.mark.opencl @pytest.mark.geo_lookup @pytest.mark.parametrize("dims", [2, 3]) def test_leaves_to_balls_query(actx_factory, dims, visualize=False): actx = actx_factory() nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype) ball_radii = 0.1 + actx.zeros(nballs, dtype) from boxtree.area_query import LeavesToBallsLookupBuilder lblb = LeavesToBallsLookupBuilder(actx.context) lbl, _ = lblb(actx.queue, tree, ball_centers, ball_radii) # get data to host for test tree = tree.get(queue=actx.queue) lbl = lbl.get(queue=actx.queue) ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]).T ball_radii = actx.to_numpy(ball_radii) assert len(lbl.balls_near_box_starts) == tree.nboxes + 1 from boxtree import box_flags_enum for ibox in range(tree.nboxes): # We only want leaves here. if tree.box_flags[ibox] & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES: continue box_center = tree.box_centers[:, ibox] ext_l, ext_h = tree.get_box_extent(ibox) box_rad = 0.5*(ext_h-ext_l)[0] linf_circle_dists = np.max(np.abs(ball_centers-box_center), axis=-1) near_circles, = np.where(linf_circle_dists - ball_radii < box_rad) start, end = lbl.balls_near_box_starts[ibox:ibox+2] assert sorted(lbl.balls_near_box_lists[start:end]) == sorted(near_circles) # }}} # {{{ area query test def run_area_query_test(actx, tree, ball_centers, ball_radii): """ Performs an area query and checks that the result is as expected. """ from boxtree.area_query import AreaQueryBuilder aqb = AreaQueryBuilder(actx.context) area_query, _ = aqb(actx.queue, tree, ball_centers, ball_radii) # Get data to host for test. tree = tree.get(queue=actx.queue) area_query = area_query.get(queue=actx.queue) ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]).T ball_radii = actx.to_numpy(ball_radii) from boxtree import box_flags_enum leaf_boxes, = ( tree.box_flags & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES == 0 ).nonzero() leaf_box_radii = np.empty(len(leaf_boxes)) dims = len(tree.sources) leaf_box_centers = np.empty((len(leaf_boxes), dims)) for idx, leaf_box in enumerate(leaf_boxes): box_center = tree.box_centers[:, leaf_box] ext_l, ext_h = tree.get_box_extent(leaf_box) leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5 leaf_box_centers[idx] = box_center for ball_nr, (ball_center, ball_radius) \ in enumerate(zip(ball_centers, ball_radii)): linf_box_dists = np.max(np.abs(ball_center - leaf_box_centers), axis=-1) near_leaves_indices, \ = np.where(linf_box_dists < ball_radius + leaf_box_radii) near_leaves = leaf_boxes[near_leaves_indices] start, end = area_query.leaves_near_ball_starts[ball_nr:ball_nr+2] found = area_query.leaves_near_ball_lists[start:end] actual = near_leaves assert set(found) == set(actual), (found, actual) @pytest.mark.opencl @pytest.mark.area_query @pytest.mark.parametrize("dims", [2, 3]) def test_area_query(actx_factory, dims, visualize=False): actx = actx_factory() nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype) ball_radii = 0.1 + actx.zeros(nballs, dtype) run_area_query_test(actx, tree, ball_centers, ball_radii) @pytest.mark.opencl @pytest.mark.area_query @pytest.mark.parametrize("dims", [2, 3]) def test_area_query_balls_outside_bbox(actx_factory, dims, visualize=False): """ The input to the area query includes balls whose centers are not within the tree bounding box. """ actx = actx_factory() nparticles = 10**4 dtype = np.float64 particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 bbox_min = tree.bounding_box[0].min() bbox_max = tree.bounding_box[1].max() from pytools.obj_array import make_obj_array rng = np.random.default_rng(13) ball_centers = make_obj_array([ actx.from_numpy( rng.uniform(bbox_min - 1, bbox_max + 1, nballs).astype(dtype)) for i in range(dims)]) ball_radii = 0.1 + actx.zeros(nballs, dtype) run_area_query_test(actx, tree, ball_centers, ball_radii) @pytest.mark.opencl @pytest.mark.area_query @pytest.mark.parametrize("dims", [2, 3]) def test_area_query_elwise(actx_factory, dims, visualize=False): actx = actx_factory() nparticles = 10**5 dtype = np.float64 particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype) ball_radii = 0.1 + actx.zeros(nballs, dtype) from boxtree.area_query import AreaQueryElementwiseTemplate, PeerListFinder template = AreaQueryElementwiseTemplate( extra_args=""" coord_t *ball_radii, %for ax in AXIS_NAMES[:dimensions]: coord_t *ball_${ax}, %endfor """, ball_center_and_radius_expr=""" %for ax in AXIS_NAMES[:dimensions]: ${ball_center}.${ax} = ball_${ax}[${i}]; %endfor ${ball_radius} = ball_radii[${i}]; """, leaf_found_op="") peer_lists, evt = PeerListFinder(actx.context)(actx.queue, tree) kernel = template.generate( actx.context, dims, tree.coord_dtype, tree.box_id_dtype, peer_lists.peer_list_starts.dtype, tree.nlevels) evt = kernel( *template.unwrap_args( tree, peer_lists, ball_radii, *ball_centers), queue=actx.queue, wait_for=[evt], range=slice(len(ball_radii))) # }}} # {{{ level restriction test @pytest.mark.opencl @pytest.mark.parametrize("lookbehind", [0, 1]) @pytest.mark.parametrize("skip_prune", [True, False]) @pytest.mark.parametrize("dims", [2, 3]) def test_level_restriction( actx_factory, dims, skip_prune, lookbehind, visualize=False): actx = actx_factory() nparticles = 10**5 dtype = np.float64 from boxtree.tools import make_surface_particle_array particles = make_surface_particle_array( actx.queue, nparticles, dims, dtype, seed=15) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree_dev, _ = tb(actx.queue, particles, kind="adaptive-level-restricted", max_particles_in_box=30, debug=True, skip_prune=skip_prune, lr_lookbehind=lookbehind, # Artificially low to exercise reallocation code nboxes_guess=10) def find_neighbors(leaf_box_centers, leaf_box_radii): # We use an area query with a ball that is slightly larger than # the size of a leaf box to find the neighboring leaves. # # Note that since this comes from an area query, the self box will be # included in the neighbor list. from boxtree.area_query import AreaQueryBuilder aqb = AreaQueryBuilder(actx.context) ball_radii = actx.from_numpy(np.min(leaf_box_radii) / 2 + leaf_box_radii) leaf_box_centers = [actx.from_numpy(axis) for axis in leaf_box_centers] area_query, _ = aqb(actx.queue, tree_dev, leaf_box_centers, ball_radii) area_query = area_query.get(queue=actx.queue) return (area_query.leaves_near_ball_starts, area_query.leaves_near_ball_lists) # Get data to host for test. tree = tree_dev.get(queue=actx.queue) # Find leaf boxes. from boxtree import box_flags_enum leaf_boxes, = ( tree.box_flags & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES == 0 ).nonzero() leaf_box_radii = np.empty(len(leaf_boxes)) leaf_box_centers = np.empty((dims, len(leaf_boxes))) for idx, leaf_box in enumerate(leaf_boxes): box_center = tree.box_centers[:, leaf_box] ext_l, ext_h = tree.get_box_extent(leaf_box) leaf_box_radii[idx] = np.max(ext_h - ext_l) * 0.5 leaf_box_centers[:, idx] = box_center neighbor_starts, neighbor_and_self_lists = find_neighbors( leaf_box_centers, leaf_box_radii) # Check level restriction. for leaf_idx, leaf in enumerate(leaf_boxes): neighbors = neighbor_and_self_lists[ neighbor_starts[leaf_idx]:neighbor_starts[leaf_idx+1]] neighbor_levels = np.array(tree.box_levels[neighbors], dtype=int) leaf_level = int(tree.box_levels[leaf]) assert np.all(np.abs(neighbor_levels - leaf_level) <= 1), \ (neighbor_levels, leaf_level) # }}} # {{{ space invader query test @pytest.mark.opencl @pytest.mark.geo_lookup @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("dims", [2, 3]) def test_space_invader_query(actx_factory, dims, dtype, visualize=False): actx = actx_factory() dtype = np.dtype(dtype) nparticles = 10**5 particles = make_normal_particle_array(actx.queue, nparticles, dims, dtype) if visualize: import matplotlib.pyplot as pt np_particles = actx.to_numpy(particles) pt.plot(np_particles[0], np_particles[1], "x") from boxtree import TreeBuilder tb = TreeBuilder(actx.context) actx.queue.finish() tree, _ = tb(actx.queue, particles, max_particles_in_box=30, debug=True) nballs = 10**4 ball_centers = make_normal_particle_array(actx.queue, nballs, dims, dtype) ball_radii = 0.1 + actx.zeros(nballs, dtype) from boxtree.area_query import LeavesToBallsLookupBuilder, SpaceInvaderQueryBuilder siqb = SpaceInvaderQueryBuilder(actx.context) # We can use leaves-to-balls lookup to get the set of overlapping balls for # each box, and from there to compute the outer space invader distance. lblb = LeavesToBallsLookupBuilder(actx.context) siq, _ = siqb(actx.queue, tree, ball_centers, ball_radii) lbl, _ = lblb(actx.queue, tree, ball_centers, ball_radii) # get data to host for test tree = tree.get(queue=actx.queue) siq = siq.get(queue=actx.queue) lbl = lbl.get(queue=actx.queue) ball_centers = np.array([actx.to_numpy(x) for x in ball_centers]) ball_radii = actx.to_numpy(ball_radii) # Find leaf boxes. from boxtree import box_flags_enum outer_space_invader_dist = np.zeros(tree.nboxes) for ibox in range(tree.nboxes): # We only want leaves here. if tree.box_flags[ibox] & box_flags_enum.HAS_SOURCE_OR_TARGET_CHILD_BOXES: continue start, end = lbl.balls_near_box_starts[ibox:ibox + 2] space_invaders = lbl.balls_near_box_lists[start:end] if len(space_invaders) > 0: outer_space_invader_dist[ibox] = np.max(np.abs( tree.box_centers[:, ibox].reshape((-1, 1)) - ball_centers[:, space_invaders])) assert np.allclose(siq, outer_space_invader_dist) # }}} # {{{ test_same_tree_with_zero_weight_particles @pytest.mark.opencl @pytest.mark.parametrize("dims", [2, 3]) def test_same_tree_with_zero_weight_particles(actx_factory, dims): actx = actx_factory() ntargets_values = [300, 400, 500] stick_out_factors = [0, 0.1, 0.3, 1] nsources = 20 from boxtree import TreeBuilder tb = TreeBuilder(actx.context) trees = [] rng = np.random.default_rng(10) for stick_out_factor in stick_out_factors: for ntargets in [40]: sources = rng.random((dims, nsources))**2 sources[:, 0] = -0.1 sources[:, 1] = 1.1 targets = rng.random((dims, max(ntargets_values)))[:, :ntargets].copy() target_radii = rng.random(max(ntargets_values))[:ntargets] sources = actx.from_numpy(sources) targets = actx.from_numpy(targets) refine_weights = actx.empty(nsources + ntargets, np.int32) refine_weights[:nsources] = 1 refine_weights[nsources:] = 0 tree, _ = tb(actx.queue, sources, targets=targets, target_radii=target_radii, stick_out_factor=stick_out_factor, max_leaf_refine_weight=10, refine_weights=refine_weights, debug=True) tree = tree.get(queue=actx.queue) trees.append(tree) print("TREE:", tree.nboxes) if 0: import matplotlib.pyplot as plt for tree in trees: plt.figure() tree.plot() plt.show() # }}} # {{{ test_max_levels_error def test_max_levels_error(actx_factory): actx = actx_factory() from boxtree import TreeBuilder tb = TreeBuilder(actx.context) sources = [actx.zeros(11, np.float64) for i in range(2)] from boxtree.tree_build import MaxLevelsExceeded with pytest.raises(MaxLevelsExceeded): _tree, _ = tb(actx.queue, sources, max_particles_in_box=10, debug=True) # }}} # You can test individual routines by typing # $ python test_tree.py 'test_routine(cl.create_some_context)' if __name__ == "__main__": if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker