Newer
Older
import numpy as np
import pyopencl as cl
import time
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
import logging
import os
logging.basicConfig(level=os.environ.get("LOGLEVEL", "WARNING"))
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@pytest.mark.opencl
@pytest.mark.parametrize(
("nsources", "ntargets", "dims", "dtype"), [
(5000, 5000, 3, np.float64)
]
)
def test_cost_counter(ctx_factory, nsources, ntargets, dims, dtype):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
# {{{ Generate sources, targets and target_radii
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(queue, nsources, dims, dtype, seed=15)
targets = p_normal(queue, ntargets, dims, dtype, seed=18)
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=22)
target_radii = rng.uniform(
queue, ntargets, a=0, b=0.05, dtype=dtype
).get()
# }}}
# {{{ Generate tree and traversal
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(
queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.15, max_particles_in_box=30, debug=True
)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
trav_dev, _ = tg(queue, tree, debug=True)
trav = trav_dev.get(queue=queue)
# {{{ Construct cost models
from boxtree.cost import CLCostModel, PythonCostModel
cl_cost_model = CLCostModel(queue, None)
python_cost_model = PythonCostModel(None)
c_l2l=1,
c_l2p=1,
c_m2l=1,
c_m2m=1,
c_m2p=1,
c_p2l=1,
c_p2m=1,
c_p2p=1
)
for ilevel in range(trav.tree.nlevels):
constant_one_params["p_fmm_lev%d" % ilevel] = 1
from boxtree.cost import pde_aware_translation_cost_model
xlat_cost = pde_aware_translation_cost_model(dims, trav.tree.nlevels)
# }}}
cl_direct = cl_cost_model.process_direct(trav_dev, 5.0)
queue.finish()
python_direct = python_cost_model.process_direct(trav, 5.0)
assert np.equal(cl_direct.get(), python_direct).all()
cl_direct_aggregate = cl_cost_model.process_direct_aggregate(trav_dev, xlat_cost)
logger.info("OpenCL time for process_direct_aggregate: {0}".format(
cl_direct_aggregate_num = evaluate(
cl_direct_aggregate, context=constant_one_params
)
python_direct_aggregate = python_cost_model.process_direct_aggregate(
trav, xlat_cost
logger.info("Python time for process_direct_aggregate: {0}".format(
python_direct_aggregate_num = evaluate(
python_direct_aggregate, context=constant_one_params
)
assert cl_direct_aggregate_num == python_direct_aggregate_num
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# {{{ Test process_list2
nlevels = trav.tree.nlevels
m2l_cost = np.zeros(nlevels, dtype=np.float64)
for ilevel in range(nlevels):
m2l_cost[ilevel] = evaluate(
xlat_cost.m2l(ilevel, ilevel),
context=constant_one_params
)
m2l_cost_dev = cl.array.to_device(queue, m2l_cost)
queue.finish()
start_time = time.time()
cl_m2l_cost = cl_cost_model.process_list2(trav_dev, m2l_cost_dev)
queue.finish()
logger.info("OpenCL time for process_list2: {0}".format(
str(time.time() - start_time)
))
start_time = time.time()
python_m2l_cost = python_cost_model.process_list2(trav, m2l_cost)
logger.info("Python time for process_list2: {0}".format(
str(time.time() - start_time)
))
assert np.equal(cl_m2l_cost.get(), python_m2l_cost).all()
# }}}
ndims = 3
dtype = np.float64
ctx_factory = cl.create_some_context
test_cost_counter(ctx_factory, nsouces, ntargets, ndims, dtype)