Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner, Xiaoyu Wei"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import sys
import pytest
import numpy as np
import pyopencl as cl
from arraycontext import pytest_generate_tests_for_array_contexts
from boxtree.array_context import ( # noqa: F401
PytestPyOpenCLArrayContextFactory, _acf)
from boxtree import (make_tree_of_boxes_root, make_meshmode_mesh_from_leaves,
uniformly_refine_tree_of_boxes)
import logging
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts([
PytestPyOpenCLArrayContextFactory,
])
def make_global_leaf_quadrature(actx, tob, order):
from meshmode.discretization.poly_element import \
GaussLegendreTensorProductGroupFactory
group_factory = GaussLegendreTensorProductGroupFactory(order=order)
mesh, _ = make_meshmode_mesh_from_leaves(tob)
if 0:
from meshmode.mesh import visualization as mvis
import matplotlib.pyplot as plt
mvis.draw_2d_mesh(mesh,
set_bounding_box=True,
draw_vertex_numbers=False,
draw_element_numbers=False)
plt.plot(tob.box_centers[0][tob.leaf_boxes],
tob.box_centers[1][tob.leaf_boxes], "rx")
plt.plot(mesh.vertices[0], mesh.vertices[1], "ro")
plt.show()
from meshmode.discretization import Discretization
discr = Discretization(actx, mesh, group_factory)
lflevels = tob.box_levels[tob.leaf_boxes]
lfmeasures = (tob.root_extent / (2**lflevels))**tob.dim
from arraycontext import flatten
weights = flatten(discr.quad_weights(), actx).with_queue(actx.queue)
jacobians = cl.array.to_device(
actx.queue,
np.repeat(lfmeasures/(2**tob.dim), discr.groups[0].nunit_dofs))
q = weights * jacobians
from pytools.obj_array import make_obj_array
nodes = discr.nodes()
x = make_obj_array([flatten(coords, actx).with_queue(actx.queue)
for coords in nodes])
return x, q
@pytest.mark.parametrize("dim", [1, 2, 3])
@pytest.mark.parametrize("order", [1, 2, 3])
@pytest.mark.parametrize("nlevels", [1, 4])
def test_uniform_tree_of_boxes(ctx_factory, dim, order, nlevels):
lower_bounds = np.random.rand(dim)
radius = np.random.rand() + 0.1
upper_bounds = lower_bounds + radius
tob = make_tree_of_boxes_root(bbox=[lower_bounds, upper_bounds])
for _ in range(nlevels - 1):
tob = uniformly_refine_tree_of_boxes(tob)
from arraycontext import PyOpenCLArrayContext
queue = cl.CommandQueue(ctx_factory())
actx = PyOpenCLArrayContext(queue)
x, q = make_global_leaf_quadrature(actx, tob, order)
# integrates 1 exactly
assert np.isclose(sum(q.get()), radius**dim)
@pytest.mark.parametrize("dim", [1, 2, 3])
@pytest.mark.parametrize("order", [1, 2, 3])
def test_uniform_tree_of_boxes_convergence(ctx_factory, dim, order):
radius = np.pi
lower_bounds = np.zeros(dim) - radius/2
upper_bounds = lower_bounds + radius
tob = make_tree_of_boxes_root(bbox=[lower_bounds, upper_bounds])
min_level = 0
max_level = 1
for _ in range(min_level):
tob = uniformly_refine_tree_of_boxes(tob)
# integrate cos(0.1*x + 0.2*y + 0.3*z + e) over [-pi/2, pi/2]**dim
qexact_table = {
1: 20 * np.sin(np.pi/20) * np.cos(np.e),
2: 50 * (np.sqrt(5) - 1) * np.sin(np.pi/20) * np.cos(np.e),
3: 250/3 * (np.sqrt(10 - 2*np.sqrt(5)) - 2) * np.cos(np.e)
}
qexact = qexact_table[dim]
from pytools.convergence import EOCRecorder
eoc_rec = EOCRecorder()
from arraycontext import PyOpenCLArrayContext
queue = cl.CommandQueue(ctx_factory())
actx = PyOpenCLArrayContext(queue)
for _ in range(min_level, max_level + 1):
x, q = make_global_leaf_quadrature(actx, tob, order)
x, q = (np.array([xx.get() for xx in x]), q.get())
inner = np.ones_like(q) * np.e
for iaxis in range(dim):
inner += (iaxis + 1) * 0.1 * x[iaxis]
f = np.cos(inner)
qh = np.sum(f * q)
err = abs(qexact - qh)
if err < 1e-14:
break # eoc will be off after hitting machine epsilon
# under uniform refinement, last box is always leaf
eoc_rec.add_data_point(tob.get_box_size(-1), err)
tob = uniformly_refine_tree_of_boxes(tob)
if len(eoc_rec.history) > 1:
# Gauss quadrature is exact up to degree 2q+1
eps = 0.05
assert eoc_rec.order_estimate() >= 2*order + 2 - eps
else:
print(err)
assert err < 1e-14
def test_tree_plot():
radius = np.pi
dim = 2
nlevels = 3
lower_bounds = np.zeros(dim) - radius/2
upper_bounds = lower_bounds + radius
tob = make_tree_of_boxes_root(bbox=[lower_bounds, upper_bounds])
for _ in range(nlevels - 1):
tob = uniformly_refine_tree_of_boxes(tob)
# test TreePlotter compatibility
from boxtree.visualization import TreePlotter
tp = TreePlotter(tob)
tp.draw_tree()
tp.set_bounding_box()
# import matplotlib.pyplot as plt
# plt.show()
def test_traversal_from_tob(ctx_factory):
radius = np.pi
dim = 2
nlevels = 3
lower_bounds = np.zeros(dim) - radius/2
upper_bounds = lower_bounds + radius
tob = make_tree_of_boxes_root(bbox=[lower_bounds, upper_bounds])
for _ in range(nlevels):
tob = uniformly_refine_tree_of_boxes(tob)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
from boxtree.tree_of_boxes import _sort_boxes_by_level
tob = _sort_boxes_by_level(tob)
def _to_device(tob, queue):
from dataclasses import replace
return replace(
tob,
box_centers=cl.array.to_device(queue, tob.box_centers),
box_parent_ids=cl.array.to_device(queue, tob.box_parent_ids),
box_child_ids=cl.array.to_device(queue, tob.box_child_ids),
box_levels=cl.array.to_device(queue, tob.box_levels))
blvlist = tob.box_levels.tolist()
level_start_box_nrs = np.array(
[blvlist.index(lv) for lv in range(tob.nlevels)])
# FIXME: fill in data
tob = _to_device(tob, queue)
tob.level_start_box_nrs = level_start_box_nrs
tob.level_start_box_nrs_dev = cl.array.to_device(queue, level_start_box_nrs)
tob._is_pruned = True
tob.sources_have_extent = False
tob.particle_id_dtype = np.dtype(np.int32)
tob.box_id_dtype = np.dtype(np.int32)
tob.box_level_dtype = np.dtype(np.int32)
tob.coord_dtype = np.dtype(np.float64)
tob.sources_are_targets = True
tob.targets_have_extent = False
tob.extent_norm = "linf"
tob.aligned_nboxes = tob.nboxes
# particle sizes
# FIXME
tob.stick_out_factor = 1e-12
tob.box_target_bounding_box_min = None
tob.box_source_bounding_box_min = None
from boxtree.traversal import FMMTraversalBuilder
from boxtree.tree import box_flags_enum
from functools import partial
empty = partial(cl.array.empty, queue, allocator=None)
tob.box_flags = empty(tob.nboxes, box_flags_enum.dtype)
tg = FMMTraversalBuilder(ctx)
trav, _ = tg(queue, tob)
# You can test individual routines by typing
# $ python test_tree.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from pytest import main
main([__file__])
# vim: fdm=marker