Newer
Older
from __future__ import division
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pytools.test
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
from boxtree.tools import make_particle_array
import logging
logger = logging.getLogger(__name__)
# {{{ connectivity test
@pytools.test.mark_test.opencl
def test_tree_connectivity(ctx_getter):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
for dims, sources_are_targets in [
(2, True),
(2, False),
(3, True),
(3, False),
]:
sources = make_particle_array(queue, 5 * 10**5, dims, dtype)
if sources_are_targets:
targets = None
else:
targets = make_particle_array(queue, 3 * 10**5, dims, dtype)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree = tb(queue, sources, max_particles_in_box=30,
targets=targets, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree, debug=True).get()
tree = tree.get()
levels = tree.box_levels
parents = tree.box_parent_ids.T
children = tree.box_child_ids.T
centers = tree.box_centers.T
# {{{ parent and child relations, levels match up
for ibox in xrange(1, tree.nboxes):
# /!\ Not testing box 0, has no parents
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
# }}}
if 0:
import matplotlib.pyplot as pt
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.show()
# {{{ neighbor_source_boxes (list 1) consists of source boxes
for itgt_box, ibox in enumerate(trav.target_boxes):
start, end = trav.neighbor_source_boxes_starts[itgt_box:itgt_box+2]
nbl = trav.neighbor_source_boxes_lists[start:end]
if sources_are_targets:
assert ibox in nbl
for jbox in nbl:
assert (0 == children[jbox]).all(), (ibox, jbox, children[jbox])
logger.info("list 1 consists of source boxes")
# }}}
# {{{ separated siblings (list 2) are actually separated
for ibox in xrange(tree.nboxes):
start, end = trav.sep_siblings_starts[ibox:ibox+2]
seps = trav.sep_siblings_lists[start:end]
assert (levels[seps] == levels[ibox]).all()
# three-ish box radii (half of size)
mindist = 2.5 * 0.5 * 2**-int(levels[ibox]) * tree.root_extent
icenter = centers[ibox]
for jbox in seps:
dist = la.norm(centers[jbox]-icenter)
assert dist > mindist, (dist, mindist)
logger.info("separated siblings (list 2) are actually separated")
if sources_are_targets:
# {{{ sep_{smaller,bigger}_nonsiblings are duals of each other
# {{{ list 4 <= list 3
for itarget_box, ibox in enumerate(trav.target_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[itarget_box:itarget_box+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
rstart, rend = trav.sep_bigger_nonsiblings_starts[jbox:jbox+2]
assert ibox in trav.sep_bigger_nonsiblings_lists[rstart:rend], (ibox, jbox)
box_to_target_box_index = np.empty(tree.nboxes, tree.box_id_dtype)
box_to_target_box_index.fill(-1)
box_to_target_box_index[trav.target_boxes] = np.arange(
len(trav.target_boxes), dtype=tree.box_id_dtype)
assert (trav.source_boxes == trav.target_boxes).all()
for ibox in xrange(tree.nboxes):
start, end = trav.sep_bigger_nonsiblings_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_nonsiblings_lists[start:end]:
# In principle, entries of sep_bigger_nonsiblings_lists are
# source boxes. In this special case, source and target boxes
# are the same thing (i.e. leaves--see assertion above), so we
# may treat them as targets anyhow.
jtgt_box = box_to_target_box_index[jbox]
assert jbox != -1
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
rstart, rend = trav.sep_smaller_nonsiblings_starts[jtgt_box:jtgt_box+2]
good = ibox in trav.sep_smaller_nonsiblings_lists[rstart:rend]
if not good:
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
plotter.draw_box(ibox, facecolor='green', alpha=0.5)
plotter.draw_box(jbox, facecolor='red', alpha=0.5)
import matplotlib.pyplot as pt
pt.gca().set_aspect("equal")
pt.show()
# This assertion failing means that ibox's list 4 contains a box
# 'jbox' whose list 3 does not contain ibox.
assert good, (ibox, jbox)
# }}}
logger.info("list 3, 4 are duals")
# }}}
# {{{ sep_smaller_nonsiblings satisfies relative level assumption
for itarget_box, ibox in enumerate(trav.target_boxes):
start, end = trav.sep_smaller_nonsiblings_starts[itarget_box:itarget_box+2]
for jbox in trav.sep_smaller_nonsiblings_lists[start:end]:
assert levels[ibox] < levels[jbox]
logger.info("list 3 satisfies relative level assumption")
# {{{ sep_smaller_nonsiblings satisfies relative level assumption
for ibox in xrange(tree.nboxes):
start, end = trav.sep_bigger_nonsiblings_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_nonsiblings_lists[start:end]:
assert levels[ibox] > levels[jbox]
logger.info("list 4 satisfies relative level assumption")
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# }}}
# }}}
# {{{ visualization helper (not a test)
def plot_traversal(ctx_getter, do_plot=False):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**4
dtype = np.float64
from pyopencl.clrandom import RanluxGenerator
rng = RanluxGenerator(queue, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
#if do_plot:
#pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree = tb(queue, particles, max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav = tg(queue, tree).get()
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
#plotter.draw_box_numbers()
plotter.set_bounding_box()
from random import randrange, seed
seed(7)
# {{{ generic box drawing helper
def draw_some_box_lists(starts, lists, key_to_box=None,
count=5):
actual_count = 0
while actual_count < count:
if key_to_box is not None:
key = randrange(len(key_to_box))
ibox = key_to_box[key]
else:
key = ibox = randrange(tree.nboxes)
start, end = starts[key:key+2]
if start == end:
continue
#print ibox, start, end, lists[start:end]
for jbox in lists[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
plotter.draw_box(ibox, facecolor='red')
actual_count += 1
# }}}
if 0:
# colleagues
draw_some_box_lists(
trav.colleagues_starts,
trav.colleagues_lists)
elif 0:
# near neighbors ("list 1")
draw_some_box_lists(
trav.neighbor_leaves_starts,
trav.neighbor_leaves_lists,
key_to_box=trav.source_boxes)
elif 0:
# well-separated siblings (list 2)
draw_some_box_lists(
trav.sep_siblings_starts,
trav.sep_siblings_lists)
elif 1:
# separated smaller non-siblings (list 3)
draw_some_box_lists(
trav.sep_smaller_nonsiblings_starts,
trav.sep_smaller_nonsiblings_lists,
key_to_box=trav.source_boxes)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
elif 1:
# separated bigger non-siblings (list 4)
draw_some_box_lists(
trav.sep_bigger_nonsiblings_starts,
trav.sep_bigger_nonsiblings_lists)
import matplotlib.pyplot as pt
pt.show()
# }}}
# You can test individual routines by typing
# $ python test_traversal.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker