Skip to content
cost_model.py 4.23 KiB
Newer Older
Alexandru Fikl's avatar
Alexandru Fikl committed
import logging
import os
import sys

import numpy as np
import pyopencl as cl

Hao Gao's avatar
Hao Gao committed

Hao Gao's avatar
Hao Gao committed
# Configure the root logger
logging.basicConfig(level=os.environ.get("LOGLEVEL", "WARNING"))
Hao Gao's avatar
Hao Gao committed

logger = logging.getLogger(__name__)
Hao Gao's avatar
Hao Gao committed

Hao Gao's avatar
Hao Gao committed
# Set the logger level of this module to INFO so that logging outputs of this module
# are shown
logger.setLevel(logging.INFO)

Hao Gao's avatar
Hao Gao committed
# `process_elapsed` in `ProcessTimer` is only supported for Python >= 3.3
SUPPORTS_PROCESS_TIME = (sys.version_info >= (3, 3))


def demo_cost_model():
    if not SUPPORTS_PROCESS_TIME:
        raise NotImplementedError(
            "Currently this script uses process time which only works on Python>=3.3"
    from boxtree.pyfmmlib_integration import (
Andreas Klöckner's avatar
Andreas Klöckner committed
        FMMLibExpansionWrangler,
        FMMLibTreeIndependentDataForWrangler,
        Kernel,
    )
    rng = np.random.default_rng(seed=42)
    nsources_list = [1000, 2000, 3000, 4000, 5000]
    ntargets_list = [1000, 2000, 3000, 4000, 5000]
    dims = 3
    dtype = np.float64

    ctx = cl.create_some_context()
    queue = cl.CommandQueue(ctx)

    traversals = []
    traversals_dev = []
Hao Gao's avatar
Hao Gao committed
    level_orders_list = []
    timing_results = []

Hao Gao's avatar
Hao Gao committed
    def fmm_level_to_order(tree, ilevel):
        return 10

    for nsources, ntargets in zip(nsources_list, ntargets_list):
        # {{{ Generate sources, targets and target_radii

        from boxtree.tools import make_normal_particle_array as p_normal
        sources = p_normal(queue, nsources, dims, dtype, seed=15)
        targets = p_normal(queue, ntargets, dims, dtype, seed=18)

        from pyopencl.clrandom import PhiloxGenerator

        clrng = PhiloxGenerator(queue.context, seed=22)
        target_radii = clrng.uniform(
            queue, ntargets, a=0, b=0.05, dtype=dtype
        ).get()

        # }}}

        # {{{ Generate tree and traversal

        from boxtree import TreeBuilder
        tb = TreeBuilder(ctx)
        tree, _ = tb(
            queue, sources, targets=targets, target_radii=target_radii,
            stick_out_factor=0.15, max_particles_in_box=30, debug=True
        )

        from boxtree.traversal import FMMTraversalBuilder
        tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=2)
        trav_dev, _ = tg(queue, tree, debug=True)
        trav = trav_dev.get(queue=queue)

        traversals.append(trav)
        traversals_dev.append(trav_dev)

        # }}}

        tree_indep = FMMLibTreeIndependentDataForWrangler(
                trav.tree.dimensions, Kernel.LAPLACE)
        wrangler = FMMLibExpansionWrangler(tree_indep, trav,
Hao Gao's avatar
Hao Gao committed
                fmm_level_to_order=fmm_level_to_order)
        level_orders_list.append(wrangler.level_orders)

        timing_data = {}
        from boxtree.fmm import drive_fmm
        src_weights = rng.random(size=tree.nsources, dtype=tree.coord_dtype)
        drive_fmm(wrangler, (src_weights,), timing_data=timing_data)

        timing_results.append(timing_data)

    time_field_name = "process_elapsed"
Alexandru Fikl's avatar
Alexandru Fikl committed
    from boxtree.cost import FMMCostModel, make_pde_aware_translation_cost_model
    cost_model = FMMCostModel(make_pde_aware_translation_cost_model)

    model_results = []
    for icase in range(len(traversals)-1):
        traversal = traversals_dev[icase]
        model_results.append(
Hao Gao's avatar
Hao Gao committed
                queue, traversal, level_orders_list[icase],
Hao Gao's avatar
Hao Gao committed
                FMMCostModel.get_unit_calibration_params(),
    queue.finish()

    params = cost_model.estimate_calibration_params(
        model_results, timing_results[:-1], time_field_name=time_field_name
    predicted_time = cost_model.cost_per_stage(
Hao Gao's avatar
Hao Gao committed
        queue, traversals_dev[-1], level_orders_list[-1], params,
    queue.finish()

    for field in ["form_multipoles", "eval_direct", "multipole_to_local",
                  "eval_multipoles", "form_locals", "eval_locals",
                  "coarsen_multipoles", "refine_locals"]:
        measured = timing_results[-1][field]["process_elapsed"]
        pred_err = (
                (measured - predicted_time[field])
                / measured)
        logger.info("actual/predicted time for %s: %.3g/%.3g -> %g %% error",
                field,
                measured,
                predicted_time[field],
                abs(100*pred_err))
if __name__ == "__main__":
    demo_cost_model()