Newer
Older
from __future__ import division, absolute_import
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from six.moves import range
import numpy as np
import numpy.linalg as la
import pyopencl as cl
import pytest
from pyopencl.tools import ( # noqa
pytest_generate_tests_for_pyopencl as pytest_generate_tests)
from boxtree.tools import make_normal_particle_array
import logging
logger = logging.getLogger(__name__)
@pytest.mark.opencl
@pytest.mark.parametrize(("dims", "sources_are_targets"), [
(2, True),
(2, False),
(3, True),
(3, False),
])
def test_tree_connectivity(ctx_getter, dims, sources_are_targets):
logging.basicConfig(level=logging.INFO)
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
dtype = np.float64
sources = make_normal_particle_array(queue, 1 * 10**5, dims, dtype)
if sources_are_targets:
targets = None
else:
targets = make_normal_particle_array(queue, 2 * 10**5, dims, dtype)
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
tree, _ = tb(queue, sources, max_particles_in_box=30,
targets=targets, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx)
trav, _ = tg(queue, tree, debug=True)
tree = tree.get(queue=queue)
trav = trav.get(queue=queue)
levels = tree.box_levels
parents = tree.box_parent_ids.T
children = tree.box_child_ids.T
centers = tree.box_centers.T
# {{{ parent and child relations, levels match up
# /!\ Not testing box 0, has no parents
parent = parents[ibox]
assert levels[parent] + 1 == levels[ibox]
assert ibox in children[parent], ibox
if 0:
import matplotlib.pyplot as pt
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
plotter.draw_box_numbers()
plotter.set_bounding_box()
pt.show()
# {{{ neighbor_source_boxes (list 1) consists of source boxes
for itgt_box, ibox in enumerate(trav.target_boxes):
start, end = trav.neighbor_source_boxes_starts[itgt_box:itgt_box+2]
nbl = trav.neighbor_source_boxes_lists[start:end]
if sources_are_targets:
assert ibox in nbl
for jbox in nbl:
assert (0 == children[jbox]).all(), (ibox, jbox, children[jbox])
logger.info("list 1 consists of source boxes")
# }}}
# {{{ separated siblings (list 2) are actually separated
for itgt_box, tgt_ibox in enumerate(trav.target_or_target_parent_boxes):
start, end = trav.sep_siblings_starts[itgt_box:itgt_box+2]
seps = trav.sep_siblings_lists[start:end]
assert (levels[seps] == levels[tgt_ibox]).all()
# three-ish box radii (half of size)
mindist = 2.5 * 0.5 * 2**-int(levels[tgt_ibox]) * tree.root_extent
icenter = centers[tgt_ibox]
for jbox in seps:
dist = la.norm(centers[jbox]-icenter)
assert dist > mindist, (dist, mindist)
logger.info("separated siblings (list 2) are actually separated")
# }}}
if sources_are_targets:
# {{{ sep_{smaller,bigger} are duals of each other
assert (trav.target_or_target_parent_boxes == np.arange(tree.nboxes)).all()
# {{{ list 4 <= list 3
for itarget_box, ibox in enumerate(trav.target_boxes):
for ssn in trav.sep_smaller_by_level:
start, end = ssn.starts[itarget_box:itarget_box+2]
for jbox in ssn.lists[start:end]:
rstart, rend = trav.sep_bigger_starts[jbox:jbox+2]
assert ibox in trav.sep_bigger_lists[rstart:rend], (ibox, jbox)
# }}}
# {{{ list 4 <= list 3
box_to_target_box_index = np.empty(tree.nboxes, tree.box_id_dtype)
box_to_target_box_index.fill(-1)
box_to_target_box_index[trav.target_boxes] = np.arange(
len(trav.target_boxes), dtype=tree.box_id_dtype)
assert (trav.source_boxes == trav.target_boxes).all()
assert (trav.target_or_target_parent_boxes == np.arange(
tree.nboxes, dtype=tree.box_id_dtype)).all()
start, end = trav.sep_bigger_starts[ibox:ibox+2]
for jbox in trav.sep_bigger_lists[start:end]:
# In principle, entries of sep_bigger_lists are
# source boxes. In this special case, source and target boxes
# are the same thing (i.e. leaves--see assertion above), so we
# may treat them as targets anyhow.
jtgt_box = box_to_target_box_index[jbox]
good = False
for ssn in trav.sep_smaller_by_level:
rstart, rend = ssn.starts[jtgt_box:jtgt_box+2]
good = good or ibox in ssn.lists[rstart:rend]
if not good:
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black", zorder=10)
plotter.set_bounding_box()
plotter.draw_box(ibox, facecolor='green', alpha=0.5)
plotter.draw_box(jbox, facecolor='red', alpha=0.5)
import matplotlib.pyplot as pt
pt.gca().set_aspect("equal")
pt.show()
# This assertion failing means that ibox's list 4 contains a box
# 'jbox' whose list 3 does not contain ibox.
assert good, (ibox, jbox)
# }}}
logger.info("list 3, 4 are duals")
# }}}
# {{{ sep_smaller satisfies relative level assumption
for itarget_box, ibox in enumerate(trav.target_boxes):
for ssn in trav.sep_smaller_by_level:
start, end = ssn.starts[itarget_box:itarget_box+2]
for jbox in ssn.lists[start:end]:
assert levels[ibox] < levels[jbox]
logger.info("list 3 satisfies relative level assumption")
# }}}
# {{{ sep_bigger satisfies relative level assumption
for itgt_box, tgt_ibox in enumerate(trav.target_or_target_parent_boxes):
start, end = trav.sep_bigger_starts[itgt_box:itgt_box+2]
for jbox in trav.sep_bigger_lists[start:end]:
assert levels[tgt_ibox] > levels[jbox]
logger.info("list 4 satisfies relative level assumption")
# }}}
# {{{ level_start_*_box_nrs lists make sense
for name, ref_array in [
("level_start_source_box_nrs", trav.source_boxes),
("level_start_source_parent_box_nrs", trav.source_parent_boxes),
("level_start_target_box_nrs", trav.target_boxes),
("level_start_target_or_target_parent_box_nrs",
trav.target_or_target_parent_boxes)
]:
level_starts = getattr(trav, name)
for lev in range(tree.nlevels):
start, stop = level_starts[lev:lev+2]
box_nrs = ref_array[start:stop]
assert (tree.box_levels[box_nrs] == lev).all(), name
# }}}
def plot_traversal(ctx_getter, do_plot=False, well_sep_is_n_away=1):
ctx = ctx_getter()
queue = cl.CommandQueue(ctx)
#for dims in [2, 3]:
for dims in [2]:
nparticles = 10**4
dtype = np.float64
from pyopencl.clrandom import PhiloxGenerator
rng = PhiloxGenerator(queue.context, seed=15)
from pytools.obj_array import make_obj_array
particles = make_obj_array([
rng.normal(queue, nparticles, dtype=dtype)
for i in range(dims)])
# if do_plot:
# pt.plot(particles[0].get(), particles[1].get(), "x")
from boxtree import TreeBuilder
tb = TreeBuilder(ctx)
queue.finish()
tree, _ = tb(queue, particles, max_particles_in_box=30, debug=True)
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(ctx, well_sep_is_n_away=well_sep_is_n_away)
trav, _ = tg(queue, tree)
tree = tree.get(queue=queue)
trav = trav.get(queue=queue)
from boxtree.visualization import TreePlotter
plotter = TreePlotter(tree)
plotter.draw_tree(fill=False, edgecolor="black")
#plotter.draw_box_numbers()
plotter.set_bounding_box()
from random import randrange, seed
seed(7)
# {{{ generic box drawing helper
def draw_some_box_lists(starts, lists, key_to_box=None,
actual_count = 0
while actual_count < count:
if key_to_box is not None:
key = randrange(len(key_to_box))
ibox = key_to_box[key]
else:
key = ibox = randrange(tree.nboxes)
start, end = starts[key:key+2]
if start == end:
continue
#print ibox, start, end, lists[start:end]
for jbox in lists[start:end]:
plotter.draw_box(jbox, facecolor='yellow')
plotter.draw_box(ibox, facecolor='red')
actual_count += 1
# }}}
if 0:
trav.same_level_near_field_boxes_starts,
trav.same_level_near_field_boxes_lists)
elif 0:
# near neighbors ("list 1")
draw_some_box_lists(
trav.neighbor_source_boxes_starts,
trav.neighbor_source_boxes_lists,
key_to_box=trav.source_boxes)
# well-separated siblings (list 2)
draw_some_box_lists(
trav.sep_siblings_starts,
trav.sep_siblings_lists)
# separated smaller (list 3)
trav.sep_smaller_starts,
trav.sep_smaller_lists,
key_to_box=trav.source_boxes)
# separated bigger (list 4)
trav.sep_bigger_starts,
trav.sep_bigger_lists)
import matplotlib.pyplot as pt
pt.show()
# }}}
# You can test individual routines by typing
# $ python test_traversal.py 'test_routine(cl.create_some_context)'
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: fdm=marker