Newer
Older
__copyright__ = "Copyright (C) 2021 Hao Gao"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import numpy.linalg as la
import pytest
from arraycontext import pytest_generate_tests_for_array_contexts
from boxtree.array_context import (
PytestPyOpenCLArrayContextFactory, # noqa: F401
_acf,
)
from boxtree.constant_one import (
ConstantOneExpansionWrangler as ConstantOneExpansionWranglerBase,
FMMLibExpansionWrangler,
FMMLibTreeIndependentDataForWrangler,
Kernel,
)
logger = logging.getLogger(__name__)
pytest_generate_tests = pytest_generate_tests_for_array_contexts([
PytestPyOpenCLArrayContextFactory,
])
# NOTE: Do not import mpi4py.MPI object at the module level, because OpenMPI
# does not support recursive invocations.
def _cachedir():
import tempfile
return tempfile.mkdtemp(prefix="boxtree-pytest-")
def _test_against_shared(
dims, nsources, ntargets, dtype, communicate_mpoles_via_allreduce=False):
from mpi4py import MPI
# Get the current rank
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
rank_cache_dir = os.path.join(tmp_cache_basedir, f"rank_{rank:03d}")
# Initialize arguments for worker processes
global_tree_host = None
sources_weights = np.empty(0, dtype=dtype)
helmholtz_k = 0
return max(level, 3)
from unittest.mock import patch
with patch.dict(os.environ, {"XDG_CACHE_HOME": rank_cache_dir}):
actx = _acf()
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(actx.context, well_sep_is_n_away=2)
tree_indep = FMMLibTreeIndependentDataForWrangler(
dims, Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE)
# Generate particles and run shared-memory parallelism on rank 0
if rank == 0:
# Generate random particles and source weights
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
targets = p_normal(actx.queue, ntargets, dims, dtype, seed=18)
rng = np.random.default_rng(20)
sources_weights = rng.uniform(0.0, 1.0, (nsources,))
target_radii = rng.uniform(0.0, 0.05, (ntargets,))
# Build the tree and interaction lists
from boxtree import TreeBuilder
tb = TreeBuilder(actx.context)
global_tree_dev, _ = tb(
actx.queue, sources, targets=targets, target_radii=target_radii,
stick_out_factor=0.25, max_particles_in_box=30, debug=True)
d_trav, _ = tg(actx.queue, global_tree_dev, debug=True)
global_traversal_host = d_trav.get(queue=actx.queue)
global_tree_host = global_traversal_host.tree
# Get pyfmmlib expansion wrangler
wrangler = FMMLibExpansionWrangler(
tree_indep, global_traversal_host,
fmm_level_to_order=fmm_level_to_order)
# Compute FMM with one MPI rank
from boxtree.fmm import drive_fmm
pot_fmm = drive_fmm(wrangler, [sources_weights]) * 2 * np.pi
# Compute FMM using the distributed implementation
def wrangler_factory(local_traversal, global_traversal):
return DistributedFMMLibExpansionWrangler(
actx.context, comm, tree_indep, local_traversal, global_traversal,
fmm_level_to_order=fmm_level_to_order,
communicate_mpoles_via_allreduce=communicate_mpoles_via_allreduce)
from boxtree.distributed import DistributedFMMRunner
distributed_fmm_info = DistributedFMMRunner(
actx.queue, global_tree_host, tg, wrangler_factory, comm=comm)
pot_dfmm = distributed_fmm_info.drive_dfmm(
[sources_weights], timing_data=timing_data)
assert timing_data
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Uncomment the following section to print the time taken of each stage
"""
if rank == 1:
from pytools import Table
table = Table()
table.add_row(["stage", "time (s)"])
for stage in timing_data:
table.add_row([stage, "%.2f" % timing_data[stage]["wall_elapsed"]])
print(table)
"""
if rank == 0:
error = (la.norm(pot_fmm - pot_dfmm * 2 * np.pi, ord=np.inf)
/ la.norm(pot_fmm, ord=np.inf))
print(error)
assert error < 1e-14
@pytest.mark.mpi
@pytest.mark.parametrize(
"num_processes, dims, nsources, ntargets, communicate_mpoles_via_allreduce", [
(4, 3, 10000, 10000, True),
(4, 3, 10000, 10000, False)
]
)
def test_against_shared(
tmp_path, num_processes, dims, nsources, ntargets,
communicate_mpoles_via_allreduce):
pytest.importorskip("mpi4py")
from boxtree.tools import run_mpi
run_mpi(__file__, num_processes, {
"PYTEST": "shared",
"dims": dims,
"nsources": nsources,
"ntargets": ntargets,
"OMP_NUM_THREADS": 1,
"tmp_cache_basedir": tmp_path / "boxtree_distributed_test",
"communicate_mpoles_via_allreduce": communicate_mpoles_via_allreduce
})
# }}}
def _test_constantone(tmp_cache_basedir, dims, nsources, ntargets, dtype):
from boxtree.distributed.calculation import DistributedExpansionWrangler
class ConstantOneExpansionWrangler(
ConstantOneExpansionWranglerBase, DistributedExpansionWrangler):
def __init__(
self, queue, comm, tree_indep, local_traversal, global_traversal):
DistributedExpansionWrangler.__init__(
self, queue, comm, global_traversal, False,
communicate_mpoles_via_allreduce=True)
ConstantOneExpansionWranglerBase.__init__(
self, tree_indep, local_traversal)
self.level_orders = np.ones(local_traversal.tree.nlevels, dtype=np.int32)
def reorder_sources(self, source_array):
if self.comm.Get_rank() == 0:
return source_array[self.global_traversal.tree.user_source_ids]
else:
return None
def reorder_potentials(self, potentials):
if self.comm.Get_rank() == 0:
return potentials[self.global_traversal.tree.sorted_target_ids]
else:
return None
from mpi4py import MPI
# Get the current rank
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
rank_cache_dir = os.path.join(tmp_cache_basedir, f"rank_{rank:03d}")
# Initialization
tree = None
sources_weights = np.empty(0, dtype=dtype)
from unittest.mock import patch
with patch.dict(os.environ, {"XDG_CACHE_HOME": rank_cache_dir}):
actx = _acf()
from boxtree.traversal import FMMTraversalBuilder
tg = FMMTraversalBuilder(actx.context)
# Generate random particles
from boxtree.tools import make_normal_particle_array as p_normal
sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
targets = (p_normal(actx.queue, ntargets, dims, dtype, seed=18)
+ np.array([2, 0, 0])[:dims])
# Constant one source weights
sources_weights = np.ones((nsources,), dtype=dtype)
# Build the global tree
from boxtree import TreeBuilder
tb = TreeBuilder(actx.context)
tree, _ = tb(
actx.queue, sources, targets=targets, max_particles_in_box=30,
debug=True)
tree = tree.get(actx.queue)
tree_indep = ConstantOneTreeIndependentDataForWrangler()
def wrangler_factory(local_traversal, global_traversal):
return ConstantOneExpansionWrangler(
actx.queue, comm, tree_indep, local_traversal, global_traversal)
from boxtree.distributed import DistributedFMMRunner
distributed_fmm_info = DistributedFMMRunner(
actx.queue, tree, tg, wrangler_factory, comm=MPI.COMM_WORLD)
pot_dfmm = distributed_fmm_info.drive_dfmm([sources_weights])
if rank == 0:
assert (np.all(pot_dfmm == nsources))
@pytest.mark.mpi
@pytest.mark.parametrize("num_processes, dims, nsources, ntargets", [
(4, 3, 10000, 10000)
])
def test_constantone(tmp_path, num_processes, dims, nsources, ntargets):
pytest.importorskip("mpi4py")
from boxtree.tools import run_mpi
run_mpi(__file__, num_processes, {
"PYTEST": "constantone",
"dims": dims,
"nsources": nsources,
"ntargets": ntargets,
"OMP_NUM_THREADS": 1,
"tmp_cache_basedir": tmp_path / "boxtree_distributed_test",
"communicate_mpoles_via_allreduce": False
})
if __name__ == "__main__":
dtype = np.float64
tmp_cache_basedir = os.environ.get("tmp_cache_basedir", _cachedir())
if "PYTEST" in os.environ:
dims = int(os.environ["dims"])
nsources = int(os.environ["nsources"])
ntargets = int(os.environ["ntargets"])
communicate_mpoles_via_allreduce = (
True if os.environ["communicate_mpoles_via_allreduce"] == "True"
else False)
if os.environ["PYTEST"] == "shared":
_test_against_shared(
dims, nsources, ntargets, dtype,
communicate_mpoles_via_allreduce=communicate_mpoles_via_allreduce)
elif os.environ["PYTEST"] == "constantone":
_test_constantone(tmp_cache_basedir, dims, nsources, ntargets, dtype)
else:
if len(sys.argv) > 1:
# You can test individual routines by typing
# $ python test_distributed.py 'test_constantone(
# tmp_cache_basedir, 4, 3, 10000, 10000)'
exec(sys.argv[1])
elif len(sys.argv) == 1:
# Run against_shared test case with default parameter
dims = 3
nsources = 10000
ntargets = 10000
_test_against_shared(tmp_cache_basedir, dims, nsources, ntargets, dtype)