Skip to content
test_fmm.py 26.6 KiB
Newer Older
Andreas Klöckner's avatar
Andreas Klöckner committed
__copyright__ = "Copyright (C) 2013 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

import pytest
Andreas Klöckner's avatar
Andreas Klöckner committed

import numpy as np
import numpy.linalg as la

from arraycontext import pytest_generate_tests_for_array_contexts
from boxtree.array_context import (                                 # noqa: F401
        PytestPyOpenCLArrayContextFactory, _acf)
from boxtree.tools import (  # noqa: F401
        make_normal_particle_array as p_normal,
        make_surface_particle_array as p_surface,
        make_uniform_particle_array as p_uniform,
        particle_array_to_host)
from boxtree.constant_one import (
        ConstantOneTreeIndependentDataForWrangler,
        ConstantOneExpansionWrangler)
import logging
logger = logging.getLogger(__name__)

pytest_generate_tests = pytest_generate_tests_for_array_contexts([
    PytestPyOpenCLArrayContextFactory,
    ])
# {{{ ref fmmlib pot computation

def get_fmmlib_ref_pot(wrangler, weights, sources_host, targets_host,
        helmholtz_k, dipole_vec=None):
    dims = sources_host.shape[0]
    eqn_letter = "h" if helmholtz_k else "l"
    use_dipoles = dipole_vec is not None

    import pyfmmlib
    fmmlib_routine = getattr(
            pyfmmlib,
            "%spot%s%ddall%s_vec" % (
                eqn_letter,
                "fld" if dims == 3 else "grad",
                dims,
                "_dp" if use_dipoles else ""))

    kwargs = {}
    if dims == 3:
        kwargs["iffld"] = False
    else:
        kwargs["ifgrad"] = False
        kwargs["ifhess"] = False

    if use_dipoles:
        if helmholtz_k == 0 and dims == 2:
            kwargs["dipstr"] = (
                    -weights  # pylint:disable=invalid-unary-operand-type
                    * (dipole_vec[0] + 1j * dipole_vec[1]))
        else:
            kwargs["dipstr"] = weights
            kwargs["dipvec"] = dipole_vec
    else:
        kwargs["charge"] = weights
    if helmholtz_k:
        kwargs["zk"] = helmholtz_k

    return wrangler.finalize_potentials(
            fmmlib_routine(
                sources=sources_host, targets=targets_host,
Andreas Klöckner's avatar
Andreas Klöckner committed
# {{{ fmm interaction completeness test

class ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder(
        ConstantOneExpansionWrangler):

    def __init__(self, tree_indep, traversal, filtered_targets):
        super().__init__(tree_indep, traversal)
        self.filtered_targets = filtered_targets

    def _get_target_slice(self, ibox):
        pstart = self.filtered_targets.box_target_starts[ibox]
        return slice(
                pstart, pstart
                + self.filtered_targets.box_target_counts_nonchild[ibox])

    def output_zeros(self):
        return np.zeros(self.filtered_targets.nfiltered_targets, dtype=np.float64)

    def reorder_potentials(self, potentials):
        tree_order_all_potentials = np.zeros(self.tree.ntargets, potentials.dtype)
        tree_order_all_potentials[
                self.filtered_targets.unfiltered_from_filtered_target_indices] \
                = potentials

        return tree_order_all_potentials[self.tree.sorted_target_ids]


class ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder(
        ConstantOneExpansionWrangler):
    def __init__(self, tree_indep, traversal, filtered_targets):
        super().__init__(tree_indep, traversal)
        self.filtered_targets = filtered_targets

    def _get_target_slice(self, ibox):
        user_target_ids = self.filtered_targets.target_lists[
                self.filtered_targets.target_starts[ibox]:
                self.filtered_targets.target_starts[ibox+1]]
        return self.tree.sorted_target_ids[user_target_ids]


@pytest.mark.parametrize("well_sep_is_n_away", [1, 2])
@pytest.mark.parametrize(("dims", "nsources_req", "ntargets_req",
        "who_has_extent", "source_gen", "target_gen", "filter_kind",
        "extent_norm", "from_sep_smaller_crit"),
Andreas Klöckner's avatar
Andreas Klöckner committed
        [
            (1, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"),

            (2, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"),
            (2, 5 * 10**4, 4*10**4, "", p_normal, p_normal, None, "linf", "static_linf"),  # noqa: E501
            (2, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"),  # noqa: E501

            (3, 10**5, None, "", p_normal, p_normal, None, "linf", "static_linf"),
            (3, 5 * 10**5, 4*10**4, "", p_normal, p_normal, None, "linf", "static_linf"),  # noqa: E501
            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"),  # noqa: E501

            (2, 10**5, None, "", p_normal, p_normal, "user", "linf", "static_linf"),
            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "user", "linf", "static_linf"),  # noqa: E501
            (2, 10**5, None, "", p_normal, p_normal, "tree", "linf", "static_linf"),
            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, "tree", "linf", "static_linf"),  # noqa: E501

            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "static_linf"),  # noqa: E501
            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "linf", "precise_linf"),  # noqa: E501
            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "l2", "precise_linf"),  # noqa: E501
            (3, 5 * 10**5, 4*10**4, "t", p_normal, p_normal, None, "l2", "static_l2"),  # noqa: E501

Andreas Klöckner's avatar
Andreas Klöckner committed
            ])
def test_fmm_completeness(actx_factory, dims, nsources_req, ntargets_req,
         who_has_extent, source_gen, target_gen, filter_kind, well_sep_is_n_away,
         extent_norm, from_sep_smaller_crit):
Andreas Klöckner's avatar
Andreas Klöckner committed
    """Tests whether the built FMM traversal structures and driver completely
    capture all interactions.
    """
    actx = actx_factory()
    devname = actx.queue.device.name.lower()
    if (dims == 1
            and actx.queue.device.platform.name == "Portable Computing Language"
            and ("nvidia" in devname or "tesla" in devname)):
        pytest.xfail("1D FMM fails to build on POCL Nvidia")

    sources_have_extent = "s" in who_has_extent
    targets_have_extent = "t" in who_has_extent
        sources = source_gen(actx.queue, nsources_req, dims, dtype, seed=15)
        nsources = len(sources[0])

        if ntargets_req is None:
            # This says "same as sources" to the tree builder.
            targets = None
            ntargets = ntargets_req
        else:
            targets = target_gen(actx.queue, ntargets_req, dims, dtype, seed=16)
            ntargets = len(targets[0])
    except ImportError:
        pytest.skip("loopy not available, but needed for particle array "
    rng = np.random.default_rng(12)
    if sources_have_extent:
        source_radii = actx.from_numpy(
                2**rng.uniform(-10, 0, (nsources)).astype(dtype)
                )
    else:
        source_radii = None

    if targets_have_extent:
        target_radii = actx.from_numpy(
                2**rng.uniform(-10, 0, (ntargets,)).astype(dtype)
                )
    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    tree, _ = tb(actx.queue, sources, targets=targets,
            max_particles_in_box=30,
            source_radii=source_radii, target_radii=target_radii,
            debug=True, stick_out_factor=0.25, extent_norm=extent_norm)
        tree = tree.get(queue=actx.queue)
        tree.plot()
        import matplotlib.pyplot as pt
        pt.show()

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(actx.context,
            well_sep_is_n_away=well_sep_is_n_away,
            from_sep_smaller_crit=from_sep_smaller_crit)
    trav, _ = tbuild(actx.queue, tree, debug=True)

    if who_has_extent:
        pre_merge_trav = trav
        trav = trav.merge_close_lists(actx.queue)
    #weights = np.random.randn(nsources)
    weights = np.ones(nsources)
    host_trav = trav.get(queue=actx.queue)
    host_tree = host_trav.tree

        pre_merge_host_trav = pre_merge_trav.get(queue=actx.queue)
    from boxtree.tree import ParticleListFilter
    plfilt = ParticleListFilter(actx.context)
    tree_indep = ConstantOneTreeIndependentDataForWrangler()

    if filter_kind:
        flags = actx.from_numpy(
                rng.integers(0, 2, ntargets or nsources, dtype=np.int8)
                )

        if filter_kind == "user":
            filtered_targets = plfilt.filter_target_lists_in_user_order(
                    actx.queue, tree, flags)
            wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInUserOrder(
                    tree_indep, host_trav,
                    actx.to_numpy(filtered_targets))
        elif filter_kind == "tree":
            filtered_targets = plfilt.filter_target_lists_in_tree_order(
                    actx.queue, tree, flags)
            wrangler = ConstantOneExpansionWranglerWithFilteredTargetsInTreeOrder(
                    tree_indep, host_trav,
                    actx.to_numpy(filtered_targets))
        else:
            raise ValueError("unsupported value of 'filter_kind'")
    else:
        wrangler = ConstantOneExpansionWrangler(tree_indep, host_trav)
        flags = 1 + actx.zeros(ntargets or nsources, dtype=np.int8)
    if ntargets is None and not filter_kind:
        # This check only works for targets == sources.
        assert np.all(
                wrangler.reorder_potentials(wrangler.reorder_sources(weights))
                == weights)
    from boxtree.fmm import drive_fmm
    pot = drive_fmm(wrangler, (weights,))
    if filter_kind:
        pot = pot[actx.to_numpy(flags) > 0]
    rel_err = la.norm((pot - weights_sum) / nsources)
    good = rel_err < 1e-8

    # {{{ build, evaluate matrix (and identify incorrect interactions)

    if 0 and not good:
        mat = np.zeros((ntargets, nsources), dtype)
        from pytools import ProgressBar

        pb = ProgressBar("matrix", nsources)
Andreas Klöckner's avatar
Andreas Klöckner committed
        for i in range(nsources):
            unit_vec = np.zeros(nsources, dtype=dtype)
            unit_vec[i] = 1
            mat[:, i] = drive_fmm(host_trav, wrangler, (unit_vec,))
        import matplotlib.pyplot as pt

        if 0:
            pt.imshow(mat)
            pt.colorbar()
        incorrect_tgts, incorrect_srcs = np.where(mat != 1)
        if 1 and len(incorrect_tgts):
            from boxtree.visualization import TreePlotter
            plotter = TreePlotter(host_tree)
            plotter.draw_tree(fill=False, edgecolor="black")
            plotter.draw_box_numbers()
            plotter.set_bounding_box()

            tree_order_incorrect_tgts = \
                    host_tree.indices_to_tree_target_order(incorrect_tgts)
            tree_order_incorrect_srcs = \
                    host_tree.indices_to_tree_source_order(incorrect_srcs)
                    host_tree.find_box_nr_for_source(i)
                    for i in tree_order_incorrect_srcs]
                    host_tree.find_box_nr_for_target(i)
                    for i in tree_order_incorrect_tgts]
Andreas Klöckner's avatar
Andreas Klöckner committed
            print(src_boxes)
            print(tgt_boxes)
            # plot all sources/targets
            if 0:
                pt.plot(
                        host_tree.targets[0],
                        host_tree.targets[1],
                        "v", alpha=0.9)
                pt.plot(
                        host_tree.sources[0],
                        host_tree.sources[1],
                        "gx", alpha=0.9)

            # plot offending sources/targets
            if 0:
                pt.plot(
                        host_tree.targets[0][tree_order_incorrect_tgts],
                        host_tree.targets[1][tree_order_incorrect_tgts],
                        "rv")
                pt.plot(
                        host_tree.sources[0][tree_order_incorrect_srcs],
                        host_tree.sources[1][tree_order_incorrect_srcs],
                        "go")
            pt.gca().set_aspect("equal")
            from boxtree.visualization import draw_box_lists
            draw_box_lists(
                    plotter,
                    pre_merge_host_trav if who_has_extent else host_trav,
                    22)
            # from boxtree.visualization import draw_same_level_non_well_sep_boxes
            # draw_same_level_non_well_sep_boxes(plotter, host_trav, 2)

        import matplotlib.pyplot as pt
        pt.plot(pot-weights_sum)
        pt.show()

    if 0 and not good:
        import matplotlib.pyplot as pt
        filt_targets = [
                host_tree.targets[0][actx.to_numpy(flags > 0)],
                host_tree.targets[1][actx.to_numpy(flags > 0)],
                ]
        host_tree.plot()
        bad = np.abs(pot - weights_sum) >= 1e-3
        bad_targets = [
                filt_targets[0][bad],
                filt_targets[1][bad],
                ]
Andreas Klöckner's avatar
Andreas Klöckner committed
        print(bad_targets[0].shape)
        pt.plot(filt_targets[0], filt_targets[1], "x")
        pt.plot(bad_targets[0], bad_targets[1], "v")
        pt.show()

Andreas Klöckner's avatar
Andreas Klöckner committed

# {{{ test fmmlib integration
@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("use_dipoles", [True, False])
@pytest.mark.parametrize("helmholtz_k", [0, 2])
def test_pyfmmlib_fmm(actx_factory, dims, use_dipoles, helmholtz_k):
    pytest.importorskip("pyfmmlib")
    actx = actx_factory()
Andreas Klöckner's avatar
Andreas Klöckner committed
    dtype = np.float64

    sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
Andreas Klöckner's avatar
Andreas Klöckner committed
    targets = (
            p_normal(actx.queue, ntargets, dims, dtype, seed=18)
Andreas Klöckner's avatar
Andreas Klöckner committed

    sources_host = particle_array_to_host(sources)
    targets_host = particle_array_to_host(targets)

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    tree, _ = tb(actx.queue, sources, targets=targets,
Andreas Klöckner's avatar
Andreas Klöckner committed
            max_particles_in_box=30, debug=True)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(actx.context)
    trav, _ = tbuild(actx.queue, tree, debug=True)
    trav = trav.get(queue=actx.queue)
    rng = np.random.default_rng(20)
    weights = rng.uniform(0.0, 1.0, (nsources,))
    if use_dipoles:
        dipole_vec = np.random.randn(dims, nsources)
    else:
        dipole_vec = None

    if dims == 2 and helmholtz_k == 0:
Hao Gao's avatar
Hao Gao committed
        base_order = 20
Hao Gao's avatar
Hao Gao committed
        base_order = 10
Hao Gao's avatar
Hao Gao committed
    def fmm_level_to_order(tree, lev):
        result = base_order

        if lev < 3 and helmholtz_k:
            # exercise order-varies-by-level capability
            result += 5

        if use_dipoles:
            result += 1

        return result

    from boxtree.pyfmmlib_integration import (
            Kernel, FMMLibTreeIndependentDataForWrangler, FMMLibExpansionWrangler)
    tree_indep = FMMLibTreeIndependentDataForWrangler(
            trav.tree.dimensions,
            Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE)
    wrangler = FMMLibExpansionWrangler(
            tree_indep, trav,
            helmholtz_k=helmholtz_k,
Hao Gao's avatar
Hao Gao committed
            fmm_level_to_order=fmm_level_to_order,
            dipole_vec=dipole_vec)
Andreas Klöckner's avatar
Andreas Klöckner committed

    from boxtree.fmm import drive_fmm
    pot = drive_fmm(wrangler, (weights,), timing_data=timing_data)
    print(timing_data)
    logger.info("computing direct (reference) result")

    ref_pot = get_fmmlib_ref_pot(wrangler, weights, sources_host.T,
            targets_host.T, helmholtz_k, dipole_vec)
    rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf)
    logger.info("relative l2 error vs fmmlib direct: %g", rel_err)
    assert rel_err < 1e-5, rel_err
    # }}}

    # {{{ check against sumpy

    try:
        import sumpy  # noqa
    except ImportError:
        have_sumpy = False
        from warnings import warn
        warn("sumpy unavailable: cannot compute independent reference "
                "values for pyfmmlib")
    else:
        have_sumpy = True

    if have_sumpy:
Matt Wala's avatar
Matt Wala committed
        from sumpy.kernel import (  # pylint:disable=import-error
                LaplaceKernel, HelmholtzKernel, DirectionalSourceDerivative)
Matt Wala's avatar
Matt Wala committed
        from sumpy.p2p import P2P  # pylint:disable=import-error

        sumpy_extra_kwargs = {}
        if helmholtz_k:
            knl = HelmholtzKernel(dims)
            sumpy_extra_kwargs["k"] = helmholtz_k
        else:
            knl = LaplaceKernel(dims)

        if use_dipoles:
            knl = DirectionalSourceDerivative(knl)
            sumpy_extra_kwargs["src_derivative_dir"] = dipole_vec

        p2p = P2P(actx.context,
                [knl],
                exclude_self=False)

        evt, (sumpy_ref_pot,) = p2p(
                actx.queue, targets, sources, (weights,),
                out_host=True, **sumpy_extra_kwargs)

        sumpy_rel_err = (
                la.norm(pot - sumpy_ref_pot, np.inf)
Andreas Klöckner's avatar
Andreas Klöckner committed
                / la.norm(sumpy_ref_pot, np.inf))
        logger.info("relative l2 error vs sumpy direct: %g", sumpy_rel_err)
        assert sumpy_rel_err < 1e-5, sumpy_rel_err

    # }}}

# {{{ test fmmlib numerical stability

@pytest.mark.parametrize("dims", [2, 3])
@pytest.mark.parametrize("helmholtz_k", [0, 2])
@pytest.mark.parametrize("order", [35])
def test_pyfmmlib_numerical_stability(actx_factory, dims, helmholtz_k, order):
    pytest.importorskip("pyfmmlib")
    actx = actx_factory()
    # The input particles are arranged with geometrically increasing/decreasing
    # spacing along a line, to build a deep tree that stress-tests the
    # translations.
    particle_line = np.array([2**-i for i in range(nsources//2)], dtype=dtype)
    particle_line = np.hstack([particle_line, 3 - particle_line])
    zero = np.zeros(nsources, dtype=dtype)
    sources = np.vstack([
    targets = sources * (1 + 1e-3)

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    tree, _ = tb(actx.queue, sources, targets=targets,
            max_particles_in_box=2, debug=True)

    assert tree.nlevels >= 15

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(actx.context)
    trav, _ = tbuild(actx.queue, tree, debug=True)
    trav = trav.get(queue=actx.queue)
    weights = np.ones_like(sources[0])

    from boxtree.pyfmmlib_integration import (
            Kernel, FMMLibTreeIndependentDataForWrangler,
            FMMLibExpansionWrangler, FMMLibRotationData)

Hao Gao's avatar
Hao Gao committed
    def fmm_level_to_order(tree, lev):
    tree_indep = FMMLibTreeIndependentDataForWrangler(
            trav.tree.dimensions,
            Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE)
    wrangler = FMMLibExpansionWrangler(
            tree_indep, trav,
            helmholtz_k=helmholtz_k,
Hao Gao's avatar
Hao Gao committed
            fmm_level_to_order=fmm_level_to_order,
            rotation_data=FMMLibRotationData(actx.queue, trav))

    from boxtree.fmm import drive_fmm
    pot = drive_fmm(wrangler, (weights,))
    assert not np.isnan(pot).any()

    # {{{ ref fmmlib computation

    logger.info("computing direct (reference) result")

    ref_pot = get_fmmlib_ref_pot(wrangler, weights, sources, targets,
            helmholtz_k)

    rel_err = la.norm(pot - ref_pot, np.inf) / la.norm(ref_pot, np.inf)
    logger.info("relative l2 error vs fmmlib direct: %g", rel_err)

    if dims == 2:
        error_bound = (1/2) ** (1 + order)
    else:
        error_bound = (3/4) ** (1 + order)

    assert rel_err < error_bound, rel_err

    # }}}

# }}}


# {{{ test particle count thresholding in traversal generation

@pytest.mark.parametrize("enable_extents", [True, False])
def test_interaction_list_particle_count_thresholding(actx_factory, enable_extents):
    actx = actx_factory()

    dims = 2
    nsources = 1000
    ntargets = 1000
    dtype = np.float

    max_particles_in_box = 30
    # Ensure that we have underfilled boxes.
    from_sep_smaller_min_nsources_cumul = 1 + max_particles_in_box

    from boxtree.fmm import drive_fmm
    sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
    targets = p_normal(actx.queue, ntargets, dims, dtype, seed=15)
    rng = np.random.default_rng(22)
        target_radii = actx.from_numpy(
                2**rng.uniform(-10, 0, (ntargets,)).astype(dtype)
                )
    else:
        target_radii = None

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    tree, _ = tb(actx.queue, sources, targets=targets,
            max_particles_in_box=max_particles_in_box,
            target_radii=target_radii,
            debug=True, stick_out_factor=0.25)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(actx.context)
    trav, _ = tbuild(actx.queue, tree, debug=True,
            _from_sep_smaller_min_nsources_cumul=from_sep_smaller_min_nsources_cumul)

    weights = np.ones(nsources)
    weights_sum = np.sum(weights)

    host_trav = trav.get(queue=actx.queue)
    tree_indep = ConstantOneTreeIndependentDataForWrangler()
    wrangler = ConstantOneExpansionWrangler(tree_indep, host_trav)
    pot = drive_fmm(wrangler, (weights,))
    assert np.all(pot == weights_sum)
# {{{ test fmm with float32 dtype

@pytest.mark.parametrize("enable_extents", [True, False])
def test_fmm_float32(actx_factory, enable_extents):
    actx = actx_factory()
    from pyopencl.characterize import has_struct_arg_count_bug
    if has_struct_arg_count_bug(actx.queue.device, actx.context):
        pytest.xfail("won't work on devices with the struct arg count issue")

    dims = 2
    nsources = 1000
    ntargets = 1000
    dtype = np.float32

    from boxtree.fmm import drive_fmm
    sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
    targets = p_normal(actx.queue, ntargets, dims, dtype, seed=15)
    rng = np.random.default_rng(12)
        target_radii = actx.from_numpy(
                2**rng.uniform(-10, 0, (ntargets,)).astype(dtype)
                )
    else:
        target_radii = None

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
    tree, _ = tb(actx.queue, sources, targets=targets,
            max_particles_in_box=30,
            target_radii=target_radii,
            debug=True, stick_out_factor=0.25)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(actx.context)
    trav, _ = tbuild(actx.queue, tree, debug=True)

    weights = np.ones(nsources)
    weights_sum = np.sum(weights)

    host_trav = trav.get(queue=actx.queue)
    tree_indep = ConstantOneTreeIndependentDataForWrangler()
    wrangler = ConstantOneExpansionWrangler(tree_indep, host_trav)
    pot = drive_fmm(wrangler, (weights,))
    assert np.all(pot == weights_sum)
Matt Wala's avatar
Matt Wala committed
# {{{ test with fmm optimized 3d m2l

@pytest.mark.parametrize("well_sep_is_n_away", (1, 2))
@pytest.mark.parametrize("helmholtz_k", (0, 2))
@pytest.mark.parametrize("nsrcntgts", (20, 10000))
def test_fmm_with_optimized_3d_m2l(actx_factory, nsrcntgts, helmholtz_k,
    pytest.importorskip("pyfmmlib")
    actx = actx_factory()
Matt Wala's avatar
Matt Wala committed

    dims = 3
    nsources = ntargets = nsrcntgts // 2
Matt Wala's avatar
Matt Wala committed
    dtype = np.float64

    sources = p_normal(actx.queue, nsources, dims, dtype, seed=15)
Matt Wala's avatar
Matt Wala committed
    targets = (
            p_normal(actx.queue, ntargets, dims, dtype, seed=18)
Matt Wala's avatar
Matt Wala committed
            + np.array([2, 0, 0])[:dims])

    from boxtree import TreeBuilder
    tb = TreeBuilder(actx.context)
Matt Wala's avatar
Matt Wala committed

    tree, _ = tb(actx.queue, sources, targets=targets,
Matt Wala's avatar
Matt Wala committed
            max_particles_in_box=30, debug=True)

    from boxtree.traversal import FMMTraversalBuilder
    tbuild = FMMTraversalBuilder(actx.context)
    trav, _ = tbuild(actx.queue, tree, debug=True)
    trav = trav.get(queue=actx.queue)
Matt Wala's avatar
Matt Wala committed

    rng = np.random.default_rng(20)
    weights = rng.uniform(0.0, 1.0, (nsources,))
Matt Wala's avatar
Matt Wala committed

Hao Gao's avatar
Hao Gao committed
    base_order = 10
Matt Wala's avatar
Matt Wala committed

Hao Gao's avatar
Hao Gao committed
    def fmm_level_to_order(tree, lev):
        result = base_order
Matt Wala's avatar
Matt Wala committed

        if lev < 3 and helmholtz_k:
            # exercise order-varies-by-level capability
            result += 5

        return result

    from boxtree.pyfmmlib_integration import (
            Kernel, FMMLibTreeIndependentDataForWrangler,
            FMMLibExpansionWrangler, FMMLibRotationData)
Matt Wala's avatar
Matt Wala committed

    tree_indep = FMMLibTreeIndependentDataForWrangler(
            trav.tree.dimensions,
            Kernel.HELMHOLTZ if helmholtz_k else Kernel.LAPLACE)
Matt Wala's avatar
Matt Wala committed
    baseline_wrangler = FMMLibExpansionWrangler(
            tree_indep, trav,
            helmholtz_k=helmholtz_k,
Hao Gao's avatar
Hao Gao committed
            fmm_level_to_order=fmm_level_to_order)
Matt Wala's avatar
Matt Wala committed

    optimized_wrangler = FMMLibExpansionWrangler(
            tree_indep, trav,
            helmholtz_k=helmholtz_k,
Hao Gao's avatar
Hao Gao committed
            fmm_level_to_order=fmm_level_to_order,
            rotation_data=FMMLibRotationData(actx.queue, trav))
Matt Wala's avatar
Matt Wala committed

    from boxtree.fmm import drive_fmm

    baseline_timing_data = {}
    baseline_pot = drive_fmm(
            baseline_wrangler, (weights,), timing_data=baseline_timing_data)
Matt Wala's avatar
Matt Wala committed

    optimized_timing_data = {}
    optimized_pot = drive_fmm(
            optimized_wrangler, (weights,), timing_data=optimized_timing_data)
Matt Wala's avatar
Matt Wala committed

Matt Wala's avatar
Matt Wala committed
    baseline_time = baseline_timing_data["multipole_to_local"]["process_elapsed"]
    if baseline_time is not None:
        print("Baseline M2L time : %#.4g s" % baseline_time)
Matt Wala's avatar
Matt Wala committed

Matt Wala's avatar
Matt Wala committed
    opt_time = optimized_timing_data["multipole_to_local"]["process_elapsed"]
    if opt_time is not None:
        print("Optimized M2L time: %#.4g s" % opt_time)
Matt Wala's avatar
Matt Wala committed

    assert np.allclose(baseline_pot, optimized_pot, atol=1e-13, rtol=1e-13)

# }}}


Andreas Klöckner's avatar
Andreas Klöckner committed
# You can test individual routines by typing
# $ python test_fmm.py 'test_routine(_acf)'
Andreas Klöckner's avatar
Andreas Klöckner committed

if __name__ == "__main__":
    import sys
    if len(sys.argv) > 1:
        exec(sys.argv[1])
    else:
        from pytest import main
Andreas Klöckner's avatar
Andreas Klöckner committed
        main([__file__])

# vim: fdm=marker