arraycontext: Choose your favorite ``numpy``-workalike ====================================================== .. image:: https://gitlab.tiker.net/inducer/arraycontext/badges/main/pipeline.svg :alt: Gitlab Build Status :target: https://gitlab.tiker.net/inducer/arraycontext/commits/main .. image:: https://github.com/inducer/arraycontext/workflows/CI/badge.svg :alt: Github Build Status :target: https://github.com/inducer/arraycontext/actions?query=branch%3Amain+workflow%3ACI .. image:: https://badge.fury.io/py/arraycontext.png :alt: Python Package Index Release Page :target: https://pypi.org/project/arraycontext/ GPU arrays? Deferred-evaluation arrays? Just plain ``numpy`` arrays? You'd like your code to work with all of them? No problem! Comes with pre-made array context implementations for: - numpy - `PyOpenCL <https://documen.tician.de/pyopencl/array.html>`__ - `Pytato <https://documen.tician.de/pytato>`__ - Debugging - Profiling ``arraycontext`` started life as an array abstraction for use with the `meshmode <https://documen.tician.de/meshmode/>`__ unstrucuted discretization package. Distributed under the MIT license. Links ----- * `Source code on Github <https://github.com/inducer/arraycontext>`_ * `Documentation <https://documen.tician.de/arraycontext>`_