from __future__ import division import numpy as np import numpy.linalg as la import pyopencl as cl import pyopencl.array as cl_array import loopy as lp from pyopencl.tools import pytest_generate_tests_for_pyopencl \ as pytest_generate_tests def make_well_conditioned_dev_matrix(queue, shape, dtype=np.float32, order="C", ran_factor=1, id_factor=5, inc_factor=0, od=0): if isinstance(shape, int): shape = (shape, shape) l = max(shape) eye_ish = id_factor*np.eye(l, k=od) if inc_factor: eye_ish[np.arange(l), np.arange(l)] = inc_factor*np.arange(l) ary = np.asarray( ran_factor*np.random.randn(*shape) + eye_ish[:shape[0], :shape[1]], dtype=dtype, order=order) return cl_array.to_device(queue, ary) DO_CHECK = True DEBUG_PREAMBLE = r""" #pragma OPENCL EXTENSION cl_amd_printf: enable #define MY_J (j_outer*64+j_inner_outer*16+j_inner_inner) #define MY_I (i_outer*16+i_inner) #define IFDIAG if (MY_I == MY_J) #define TST(S) if (MY_J == 144 && MY_I == 16-48) \ for (int aa = 0; aa < 16: ++ab) \ for (int bb = 0; bb < 16: ++bb) """ def check_error(refsol, sol): if not DO_CHECK: return if sol.shape == 2: norm_order = "fro" else: norm_order = 2 rel_err = la.norm(refsol-sol, norm_order)/la.norm(refsol, norm_order) if rel_err > 1e-5 or np.isinf(rel_err) or np.isnan(rel_err): if 1: import matplotlib.pyplot as pt pt.imshow(refsol-sol) pt.colorbar() pt.show() elif 0: print "---------------------------" print "ACTUAL" print "---------------------------" np.set_printoptions(threshold=1000000, linewidth=200) print sol[:16,:16] print "---------------------------" print "CORRECT" print "---------------------------" print refsol[:16,:16] raise RuntimeError("check failed, rel err=%g" % rel_err) def test_sem(ctx_factory): dtype = np.float32 ctx = ctx_factory() order = "C" queue = cl.CommandQueue(ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) # n = get_suitable_size(ctx) # 0<=i,j,k,m<=N AND 0<=k {[i,j,k,ip,jp,kp,e,m,mp]: 0<=i,j,k,m,ip,jp,kp,mp<%d AND 0<=e {[i,j,k,e,m,mp]: 0<=i,j,k,m,mp<%d AND 0<=e {[i,j,k,ip,jp,kp,e,m,mp]: 0<=i,j,k,m,ip,jp,kp,mp<%d AND 0<=e {[i,j,k,e,m,mp]: 0<=i,j,k,m,mp<%d AND 0<=e {[i,j,k,e,m]: 0<=i,j,k,m<%d and 0<=e ur[i,j,k] = sum_float32(m, D[i,m]*u[m,j,k,e])", "[|i,j,k] us[i,j,k] = sum_float32(m, D[j,m]*u[i,m,k,e])", "[|i,j,k] ut[i,j,k] = sum_float32(m, D[k,m]*u[i,j,m,e])", "lap[i,j,k,e] = " " sum_float32(m, D[m,i]*(G[0,m,j,k,e]*ur[m,j,k] + G[1,m,j,k,e]*us[m,j,k] + G[2,m,j,k,e]*ut[m,j,k]))" "+ sum_float32(m, D[m,j]*(G[1,i,m,k,e]*ur[i,m,k] + G[3,i,m,k,e]*us[i,m,k] + G[4,i,m,k,e]*ut[i,m,k]))" "+ sum_float32(m, D[m,k]*(G[2,i,j,m,e]*ur[i,j,m] + G[4,i,j,m,e]*us[i,j,m] + G[5,i,j,m,e]*ut[i,j,m]))" ], [ lp.ArrayArg("u", dtype, shape=field_shape, order=order), lp.ArrayArg("lap", dtype, shape=field_shape, order=order), lp.ArrayArg("G", dtype, shape=(6,) + field_shape, order=order), lp.ArrayArg("D", dtype, shape=(n, n), order=order), lp.ScalarArg("K", np.int32, approximately=1000), ], name="semlap", assumptions="K>=1") #print knl #for tv in knl.temporary_variables.iteritems(): #print tv #1/0 knl = lp.split_dimension(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1)) #knl = lp.split_dimension(knl, "e_inner", 4, inner_tag="ilp") knl = lp.tag_dimensions(knl, dict(i="l.0", j="l.1")) #knl = lp.realize_cse(knl, "build_ur", np.float32, ["j", "k"]) #knl = lp.realize_cse(knl, "build_ur", np.float32, ["j", "k", "mp"]) knl = lp.preprocess_kernel(knl) #print knl #1/0 kernel_gen = lp.generate_loop_schedules(knl) kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5) a = make_well_conditioned_dev_matrix(queue, n, dtype=dtype, order=order) b = make_well_conditioned_dev_matrix(queue, n, dtype=dtype, order=order) c = cl_array.empty_like(a) refsol = np.dot(a.get(), b.get()) def launcher(kernel, gsize, lsize, check): evt = kernel(queue, gsize(), lsize(), a.data, b.data, c.data, g_times_l=True) if check: check_error(refsol, c.get()) return evt lp.drive_timing_run(kernel_gen, queue, launcher, 2*n**3) if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__])