from __future__ import division import numpy as np import pyopencl as cl import loopy as lp from pyopencl.tools import pytest_generate_tests_for_pyopencl \ as pytest_generate_tests def test_laplacian_stiffness(ctx_factory): dtype = np.float32 ctx = ctx_factory() order = "C" dim = 2 # (baked into code) Nq = 40 # num. quadrature points (baked into code) Nb = 20 # num. basis functions (baked into code) Nc = 100 # num. cells (run-time symbolic) from pymbolic import var Nc_sym = var("Nc") knl = lp.make_kernel(ctx.devices[0], "[Nc] -> {[K,i,j,q, dx_axis, ax_b]: 0<=K<Nc and 0<=i,j<%(Nb)d and 0<=q<%(Nq)d " "and 0<= dx_axis, ax_b < %(dim)d}" % dict(Nb=Nb, Nq=Nq, dim=dim), [ "dPsi(ij, dxi) := sum_float32(@ax_b," " jacInv[ax_b,dxi,K,q] * DPsi[ax_b,ij,q])", "A[K, i, j] = sum_float32(q, w[q] * jacDet[K,q] * (" "sum_float32(dx_axis, dPsi$one(i,dx_axis)*dPsi$two(j,dx_axis))))" ], [ lp.GlobalArg("jacInv", dtype, shape=(dim, dim, Nc_sym, Nq), order=order), lp.ConstantArg("DPsi", dtype, shape=(dim, Nb, Nq), order=order), lp.GlobalArg("jacDet", dtype, shape=(Nc_sym, Nq), order=order), lp.ConstantArg("w", dtype, shape=(Nq,), order=order), lp.GlobalArg("A", dtype, shape=(Nc_sym, Nb, Nb), order=order), lp.ValueArg("Nc", np.int32, approximately=1000), ], name="lapquad", assumptions="Nc>=1") knl = lp.tag_inames(knl, dict(ax_b="unr")) seq_knl = knl def variant_fig31(knl): # This (mostly) reproduces Figure 3.1. knl = lp.tag_inames(knl, {"dx_axis": "unr"}) return knl, ["K", "i", "j", "q", "ax_b_insn"] def variant_pg4(knl): # This (mostly) reproduces the unlabeled code snippet on pg. 4. knl = lp.tag_inames(knl, {"dx_axis": "unr"}) Ncloc = 16 knl = lp.split_iname(knl, "K", Ncloc, outer_iname="Ko", inner_iname="Kloc") return knl, ["Ko", "Kloc", "i", "j", "q", "ax_b_insn"] def variant_fig32(knl): # This (mostly) reproduces Figure 3.2. Ncloc = 16 knl = lp.split_iname(knl, "K", Ncloc, outer_iname="Ko", inner_iname="Kloc") knl = lp.precompute(knl, "dPsi", np.float32, ["i", "q", "dx_axis"], default_tag=None) knl = lp.tag_inames(knl, {"dx_axis": "unr", "dxi": "unr"}) return knl, ["Ko", "Kloc", "dPsi_q", "ij", "i", "j", "q", "ax_b_insn"] def variant_fig33(knl): # This is meant to (mostly) reproduce Figure 3.3. Ncloc = 16 knl = lp.split_iname(knl, "K", Ncloc, outer_iname="Ko", inner_iname="Kloc") knl = lp.precompute(knl, "dPsi$one", np.float32, ["dx_axis"], default_tag=None) knl = lp.tag_inames(knl, {"j": "ilp.seq"}) return knl, ["Ko", "Kloc"] def variant_simple_gpu(knl): # This is a simple GPU-ish variant. # It's not the same thing as Matt's code, but I'll need some more time # to reverse-engineer what is going on there. Some discussion might # help, too. :) knl = lp.tag_inames(knl, {"dx_axis": "unr"}) Ncloc = 16 knl = lp.split_iname(knl, "K", Ncloc, outer_iname="Ko", inner_iname="Kloc", outer_tag="g.0") knl = lp.tag_inames(knl, {"i": "l.1", "j": "l.0"}) return knl, ["K", "i", "j", "q", "ax_b_insn"] def variant_simple_gpu_prefetch(knl): # This adds prefetching to the GPU variant above. # In this variant (on my machine), loopy makes a silly choice # for the upper bound of Kloc (it uses Nc). I'll investigate and # fix that. (FIXME) knl = lp.tag_inames(knl, {"dx_axis": "unr"}) Ncloc = 16 knl = lp.split_iname(knl, "K", Ncloc, outer_iname="Ko", inner_iname="Kloc", outer_tag="g.0") knl = lp.tag_inames(knl, {"i": "l.1", "j": "l.0"}) knl = lp.add_prefetch(knl, "w", ["q"]) knl = lp.add_prefetch(knl, "DPsi", [0, 1, 2]) knl = lp.add_prefetch(knl, "jacInv", [0, 1, 3]) knl = lp.add_prefetch(knl, "jacDet", [1]) return knl, ["K", "i", "j", "q", "ax_b_insn"] # Plug in variant name here # | # v for variant in [variant_fig33]: var_knl, loop_prio = variant(knl) kernel_gen = lp.generate_loop_schedules(var_knl, loop_priority=loop_prio) kernel_gen = lp.check_kernels(kernel_gen, dict(Nc=Nc)) #print lp.preprocess_kernel(var_knl) lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen, op_count=0, op_label="GFlops", parameters={"Nc": Nc}, print_ref_code=True) if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from py.test.cmdline import main main([__file__])