Newer
Older
from __future__ import division
import numpy as np
import loopy as lp
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
__all__ = ["pytest_generate_tests",
"cl" # 'cl.create_some_context'
]
def test_type_inference_no_artificial_doubles(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<n}",
"""
<> bb = a[i] - b[i]
c[i] = bb
""",
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.GlobalArg("c", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1")
for k in lp.generate_loop_schedules(knl):
code = lp.generate_code(k)
assert "double" not in code
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def test_simple_side_effect(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<=i,j<100}",
"""
a[i] = a[i] + 1
""",
[lp.GlobalArg("a", np.float32, shape=(100,))]
)
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
print gen_knl
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
def test_nonsense_reduction(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
"""
a[i] = sum(i, 2)
""",
[lp.GlobalArg("a", np.float32, shape=(100,))]
)
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl))
def test_owed_barriers(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i]"
],
[lp.GlobalArg("a", np.float32, shape=(100,))]
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
Andreas Klöckner
committed
def test_wg_too_small(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i] {id=copy}"
Andreas Klöckner
committed
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
Andreas Klöckner
committed
local_sizes={0: 16})
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
try:
lp.CompiledKernel(ctx, gen_knl)
Andreas Klöckner
committed
except RuntimeError, e:
assert "implemented and desired" in str(e)
pass # expected!
else:
assert False # expecting an error
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def test_join_inames(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<=i,j<16}",
[
"b[i,j] = 2*a[i,j]"
],
[
lp.GlobalArg("a", np.float32, shape=(16, 16,)),
lp.GlobalArg("b", np.float32, shape=(16, 16,))
],
)
ref_knl = knl
knl = lp.add_prefetch(knl, "a", sweep_inames=["i", "j"])
knl = lp.join_inames(knl, ["a_dim_0", "a_dim_1"])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen)
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def test_divisibility_assumption(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"[n] -> {[i]: 0<=i<n}",
[
"b[i] = 2*a[i]"
],
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1 and (exists zz: n = 16*zz)")
ref_knl = knl
knl = lp.split_iname(knl, "i", 16)
for k in lp.generate_loop_schedules(knl):
code = lp.generate_code(k)
assert "if" not in code
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen,
parameters={"n": 16**3})
def test_multi_cse(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i] <float32> z[i] = a[i] + a[i]**2"
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
local_sizes={0: 16})
knl = lp.split_iname(knl, "i", 16, inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", [])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
def test_stencil(ctx_factory):
ctx = ctx_factory()
# n=32 causes corner case behavior in size calculations for temprorary (a
# non-unifiable, two-constant-segments PwAff as the base index)
n = 256
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < %d}" % n,
"a_offset(ii, jj) := a[ii+1, jj+1]",
"z[i,j] = -2*a_offset(i,j)"
" + a_offset(i,j-1)"
" + a_offset(i,j+1)"
" + a_offset(i-1,j)"
" + a_offset(i+1,j)"
lp.GlobalArg("a", np.float32, shape=(n+2,n+2,)),
lp.GlobalArg("z", np.float32, shape=(n+2,n+2,))
def variant_1(knl):
knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"])
for variant in [variant_1]:
kernel_gen = lp.generate_loop_schedules(variant(knl),
loop_priority=["i_outer", "i_inner_0", "j_0"])
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen,
fills_entire_output=False, print_ref_code=True,
op_count=[n*n], op_label=["cells"])
def test_eq_constraint(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < 32}",
[
"a[i] = b[i]"
],
[
lp.GlobalArg("a", np.float32, shape=(1000,)),
lp.GlobalArg("b", np.float32, shape=(1000,))
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0")
knl = lp.split_iname(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for knl in kernel_gen:
print lp.generate_code(knl)
def test_argmax(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
order = "C"
n = 10000
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<%d}" % n,
[
"<> result = argmax(i, fabs(a[i]))",
"max_idx = result.index",
"max_val = result.value",
],
[
lp.GlobalArg("a", dtype, shape=(n,), order=order),
lp.GlobalArg("max_idx", np.int32, shape=(), order=order),
lp.GlobalArg("max_val", dtype, shape=(), order=order),
])
a = np.random.randn(10000).astype(dtype)
cknl = lp.CompiledKernel(ctx, knl)
evt, (max_idx, max_val) = cknl(queue, a=a, out_host=True)
assert max_val == np.max(np.abs(a))
assert max_idx == np.where(np.abs(a)==max_val)[-1]
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def make_random_value():
from random import randrange, uniform
v = randrange(3)
if v == 0:
while True:
z = randrange(-1000, 1000)
if z:
return z
elif v == 1:
return uniform(-10, 10)
else:
return uniform(-10, 10) + 1j*uniform(-10, 10)
def make_random_expression(var_values, size):
from random import randrange
import pymbolic.primitives as p
v = randrange(1500)
size[0] += 1
if v < 500 and size[0] < 40:
term_count = randrange(2, 5)
if randrange(2) < 1:
cls = p.Sum
else:
cls = p.Product
return cls(tuple(
make_random_expression(var_values, size)
for i in range(term_count)))
elif v < 750:
return make_random_value()
elif v < 1000:
var_name = "var_%d" % len(var_values)
assert var_name not in var_values
var_values[var_name] = make_random_value()
return p.Variable(var_name)
elif v < 1250:
return make_random_expression(var_values, size) - make_random_expression(var_values, size)
elif v < 1500:
return make_random_expression(var_values, size) / make_random_expression(var_values, size)
def generate_random_fuzz_examples(count):
for i in xrange(count):
size = [0]
var_values = {}
expr = make_random_expression(var_values, size)
yield expr, var_values
def test_fuzz_code_generator(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
#from expr_fuzz import get_fuzz_examples
for expr, var_values in generate_random_fuzz_examples(20):
#for expr, var_values in get_fuzz_examples():
from pymbolic import evaluate
true_value = evaluate(expr, var_values)
def get_dtype(x):
if isinstance(x, complex):
return np.complex128
else:
return np.float64
knl = lp.make_kernel(ctx.devices[0], "{ : }",
[lp.Instruction(None, "value", expr)],
[lp.GlobalArg("value", np.complex128, shape=())]
+ [
for name, val in var_values.iteritems()
])
ck = lp.CompiledKernel(ctx, knl)
evt, (lp_value,) = ck(queue, out_host=True, **var_values)
err = abs(true_value-lp_value)/abs(true_value)
if abs(err) > 1e-10:
print "---------------------------------------------------------------------"
print "WRONG: rel error=%g" % err
print "true=%r" % true_value
print "loopy=%r" % lp_value
print "---------------------------------------------------------------------"
print ck.code
print "---------------------------------------------------------------------"
print var_values
print "---------------------------------------------------------------------"
print repr(expr)
print "---------------------------------------------------------------------"
print expr
print "---------------------------------------------------------------------"
1/0
Andreas Klöckner
committed
def test_empty_reduction(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<20}",
Andreas Klöckner
committed
],
[
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, (20,)),
])
cknl = lp.CompiledKernel(ctx, knl)
evt, (a,) = cknl(queue)
assert (a.get() == 0).all()
Andreas Klöckner
committed
def test_nested_dependent_reduction(ctx_factory):
Andreas Klöckner
committed
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
Andreas Klöckner
committed
"{[j]: 0<=j<i+sumlen}"
],
[
"<> sumlen = l[i]",
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("l", np.int32, ("n",)),
Andreas Klöckner
committed
])
cknl = lp.CompiledKernel(ctx, knl)
n = 330
l = np.arange(n, dtype=np.int32)
evt, (a,) = cknl(queue, l=l, n=n, out_host=True)
tgt_result = (2*l-1)*2*l/2
assert (a == tgt_result).all()
Andreas Klöckner
committed
def test_dependent_loop_bounds(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
[
"<> row_len = a_rowstarts[i+1] - a_rowstarts[i]",
"ax[i] = sum(jj, a_values[a_rowstarts[i]+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_2(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_start = a_rowstarts[i]",
"<> row_len = a_rowstarts[i+1] - row_start",
"ax[i] = sum(jj, a_values[row_start+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_3(ctx_factory):
# The point of this test is that it shows a dependency between
# domains that is exclusively mediated by the row_len temporary.
# It also makes sure that row_len gets read before any
# conditionals use it.
Andreas Klöckner
committed
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_len = a_row_lengths[i]",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_row_lengths", np.int32),
lp.GlobalArg("a", dtype, shape=("n,n"), order="C"),
Andreas Klöckner
committed
])
assert knl.parents_per_domain()[1] == 0
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
Andreas Klöckner
committed
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
knl_bad = lp.split_iname(knl, "jj", 128, outer_tag="g.1",
inner_tag="l.1")
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl_bad))
def test_independent_multi_domain(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[j]: 0<=j<n}",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
lp.GlobalArg("b", dtype, shape=("n"), order="C"),
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0",
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0",
assert knl.parents_per_domain() == 2*[None]
n = 50
cknl = lp.CompiledKernel(ctx, knl)
evt, (a, b) = cknl(queue, n=n, out_host=True)
assert a.shape == (50,)
assert b.shape == (50,)
def test_bare_data_dependency(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"[znirp] -> {[i]: 0<=i<znirp}",
],
[
"<> znirp = n",
"a[i] = 1",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
])
cknl = lp.CompiledKernel(ctx, knl)
n = 20000
evt, (a,) = cknl(queue, n=n, out_host=True)
assert a.shape == (n,)
assert (a == 1).all()
Andreas Klöckner
committed
def test_equality_constraints(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
knl = lp.make_kernel(ctx.devices[0], [
"[n] -> {[i,j]: 0<=i,j<n }",
"{[k]: k =i+5 and k < n}",
],
"a[i,j] = 5 {id=set_all}",
"a[i,k] = 22 {dep=set_all}",
lp.GlobalArg("a", dtype, shape="n, n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
name="equality_constraints", assumptions="n>=1")
seq_knl = knl
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
#print knl
#print knl.domains[0].detect_equalities()
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), print_ref_code=True)
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
def test_stride(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel(ctx.devices[0], [
"{[i]: 0<=i<n and (exists l: i = 2*l)}",
],
[
"a[i] = 5",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), fills_entire_output=False)
def test_domain_dependency_via_existentially_quantified_variable(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel(ctx.devices[0], [
"{[i]: 0<=i<n }",
"{[k]: k=i and (exists l: k = 2*l) }",
],
[
"a[i] = 5 {id=set}",
"a[k] = 6 {dep=set}",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), )
# {{{ test race detection
def test_ilp_write_race_detection_global(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0], [
"[n] -> {[i,j]: 0<=i,j<n }",
],
[
"[j:ilp] a[i] = 5+i+j",
],
[
lp.GlobalArg("a", np.float32),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
from loopy.check import WriteRaceConditionError
import pytest
with pytest.raises(WriteRaceConditionError):
list(lp.generate_loop_schedules(knl))
def test_ilp_write_race_avoidance_local(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"[i:l.0, j:ilp] <> a[i] = 5+i+j",
],
[])
for k in lp.generate_loop_schedules(knl):
assert k.temporary_variables["a"].shape == (16,17)
def test_ilp_write_race_avoidance_private(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[j]: 0<=j<16 }",
[
"[j:ilp] <> a = 5+j",
],
[])
for k in lp.generate_loop_schedules(knl):
assert k.temporary_variables["a"].shape == (16,)
# }}}
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: foldmethod=marker