Newer
Older
from __future__ import division
import numpy as np
import loopy as lp
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
__all__ = ["pytest_generate_tests",
"cl" # 'cl.create_some_context'
]
def test_owed_barriers(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i]"
],
[lp.GlobalArg("a", np.float32, shape=(100,))]
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
Andreas Klöckner
committed
def test_wg_too_small(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i] {id=copy}"
Andreas Klöckner
committed
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
Andreas Klöckner
committed
local_sizes={0: 16})
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
try:
lp.CompiledKernel(ctx, gen_knl)
Andreas Klöckner
committed
except RuntimeError, e:
assert "implemented and desired" in str(e)
pass # expected!
else:
assert False # expecting an error
def test_join_inames(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<=i,j<16}",
[
"b[i,j] = 2*a[i,j]"
],
[
lp.GlobalArg("a", np.float32, shape=(16, 16,)),
lp.GlobalArg("b", np.float32, shape=(16, 16,))
],
)
ref_knl = knl
knl = lp.add_prefetch(knl, "a", sweep_inames=["i", "j"])
knl = lp.join_inames(knl, ["a_dim_0", "a_dim_1"])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen)
def test_multi_cse(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i] <float32> z[i] = a[i] + a[i]**2"
[lp.GlobalArg("a", np.float32, shape=(100,))],
local_sizes={0: 16})
knl = lp.split_iname(knl, "i", 16, inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", [])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
def test_stencil(ctx_factory):
ctx = ctx_factory()
# n=32 causes corner case behavior in size calculations for temprorary (a
# non-unifiable, two-constant-segments PwAff as the base index)
n = 256
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < %d}" % n,
"a_offset(ii, jj) := a[ii+1, jj+1]",
"z[i,j] = -2*a_offset(i,j)"
" + a_offset(i,j-1)"
" + a_offset(i,j+1)"
" + a_offset(i-1,j)"
" + a_offset(i+1,j)"
lp.GlobalArg("a", np.float32, shape=(n+2,n+2,)),
lp.GlobalArg("z", np.float32, shape=(n+2,n+2,))
def variant_1(knl):
knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"])
for variant in [variant_1]:
kernel_gen = lp.generate_loop_schedules(variant(knl),
loop_priority=["i_outer", "i_inner_0", "j_0"])
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen,
fills_entire_output=False, print_ref_code=True,
op_count=[n*n], op_label=["cells"])
def test_eq_constraint(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < 32}",
[
"a[i] = b[i]"
],
[
lp.GlobalArg("a", np.float32, shape=(1000,)),
lp.GlobalArg("b", np.float32, shape=(1000,))
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0")
knl = lp.split_iname(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for knl in kernel_gen:
print lp.generate_code(knl)
def test_argmax(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
order = "C"
n = 10000
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<%d}" % n,
[
"<> result = argmax(i, fabs(a[i]))",
"max_idx = result.index",
"max_val = result.value",
],
[
lp.GlobalArg("a", dtype, shape=(n,), order=order),
lp.GlobalArg("max_idx", np.int32, shape=(), order=order),
lp.GlobalArg("max_val", dtype, shape=(), order=order),
])
a = np.random.randn(10000).astype(dtype)
cknl = lp.CompiledKernel(ctx, knl)
evt, (max_idx, max_val) = cknl(queue, a=a, out_host=True)
assert max_val == np.max(np.abs(a))
assert max_idx == np.where(np.abs(a)==max_val)[-1]
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def make_random_value():
from random import randrange, uniform
v = randrange(3)
if v == 0:
while True:
z = randrange(-1000, 1000)
if z:
return z
elif v == 1:
return uniform(-10, 10)
else:
return uniform(-10, 10) + 1j*uniform(-10, 10)
def make_random_expression(var_values, size):
from random import randrange
import pymbolic.primitives as p
v = randrange(1500)
size[0] += 1
if v < 500 and size[0] < 40:
term_count = randrange(2, 5)
if randrange(2) < 1:
cls = p.Sum
else:
cls = p.Product
return cls(tuple(
make_random_expression(var_values, size)
for i in range(term_count)))
elif v < 750:
return make_random_value()
elif v < 1000:
var_name = "var_%d" % len(var_values)
assert var_name not in var_values
var_values[var_name] = make_random_value()
return p.Variable(var_name)
elif v < 1250:
return make_random_expression(var_values, size) - make_random_expression(var_values, size)
elif v < 1500:
return make_random_expression(var_values, size) / make_random_expression(var_values, size)
def generate_random_fuzz_examples(count):
for i in xrange(count):
size = [0]
var_values = {}
expr = make_random_expression(var_values, size)
yield expr, var_values
def test_fuzz_code_generator(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
#from expr_fuzz import get_fuzz_examples
for expr, var_values in generate_random_fuzz_examples(20):
#for expr, var_values in get_fuzz_examples():
from pymbolic import evaluate
true_value = evaluate(expr, var_values)
def get_dtype(x):
if isinstance(x, complex):
return np.complex128
else:
return np.float64
knl = lp.make_kernel(ctx.devices[0], "{ : }",
[lp.Instruction(None, "value", expr)],
[lp.GlobalArg("value", np.complex128, shape=())]
+ [
for name, val in var_values.iteritems()
])
ck = lp.CompiledKernel(ctx, knl)
evt, (lp_value,) = ck(queue, out_host=True, **var_values)
err = abs(true_value-lp_value)/abs(true_value)
if abs(err) > 1e-10:
print "---------------------------------------------------------------------"
print "WRONG: rel error=%g" % err
print "true=%r" % true_value
print "loopy=%r" % lp_value
print "---------------------------------------------------------------------"
print ck.code
print "---------------------------------------------------------------------"
print var_values
print "---------------------------------------------------------------------"
print repr(expr)
print "---------------------------------------------------------------------"
print expr
print "---------------------------------------------------------------------"
1/0
Andreas Klöckner
committed
def test_empty_reduction(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<20}",
Andreas Klöckner
committed
],
[
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, (20,)),
])
cknl = lp.CompiledKernel(ctx, knl)
evt, (a,) = cknl(queue)
assert (a.get() == 0).all()
Andreas Klöckner
committed
def test_nested_dependent_reduction(ctx_factory):
Andreas Klöckner
committed
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
Andreas Klöckner
committed
"{[j]: 0<=j<i+sumlen}"
],
[
"<> sumlen = l[i]",
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("l", np.int32, ("n",)),
Andreas Klöckner
committed
])
cknl = lp.CompiledKernel(ctx, knl)
n = 330
l = np.arange(n, dtype=np.int32)
evt, (a,) = cknl(queue, l=l, n=n, out_host=True)
tgt_result = (2*l-1)*2*l/2
assert (a == tgt_result).all()
Andreas Klöckner
committed
def test_dependent_loop_bounds(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
[
"<> row_len = a_rowstarts[i+1] - a_rowstarts[i]",
"ax[i] = sum(jj, a_values[a_rowstarts[i]+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_2(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_start = a_rowstarts[i]",
"<> row_len = a_rowstarts[i+1] - row_start",
"ax[i] = sum(jj, a_values[row_start+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_3(ctx_factory):
# The point of this test is that it shows a dependency between
# domains that is exclusively mediated by the row_len temporary.
# It also makes sure that row_len gets read before any
# conditionals use it.
Andreas Klöckner
committed
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_len = a_row_lengths[i]",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_row_lengths", np.int32),
lp.GlobalArg("a", dtype, shape=("n,n"), order="C"),
Andreas Klöckner
committed
])
assert knl.parents_per_domain()[1] == 0
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
Andreas Klöckner
committed
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
knl_bad = lp.split_iname(knl, "jj", 128, outer_tag="g.1",
inner_tag="l.1")
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl_bad))
def test_independent_multi_domain(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[j]: 0<=j<n}",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
lp.GlobalArg("b", dtype, shape=("n"), order="C"),
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0",
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0",
assert knl.parents_per_domain() == 2*[None]
n = 50
cknl = lp.CompiledKernel(ctx, knl)
evt, (a, b) = cknl(queue, n=n, out_host=True)
assert a.shape == (50,)
assert b.shape == (50,)
def test_bare_data_dependency(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"[znirp] -> {[i]: 0<=i<znirp}",
],
[
"<> znirp = n",
"a[i] = 1",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
])
cknl = lp.CompiledKernel(ctx, knl)
n = 20000
evt, (a,) = cknl(queue, n=n, out_host=True)
assert a.shape == (n,)
assert (a == 1).all()
Andreas Klöckner
committed
def test_equality_constraints(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
knl = lp.make_kernel(ctx.devices[0], [
"[n] -> {[i,j]: 0<=i,j<n }",
"{[k]: k =i+5 and k < n}",
],
"a[i,j] = 5 {id=set_all}",
"a[i,k] = 22 {dep=set_all}",
lp.GlobalArg("a", dtype, shape="n, n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
name="equality_constraints", assumptions="n>=1")
seq_knl = knl
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
#print knl
#print knl.domains[0].detect_equalities()
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), print_ref_code=True)
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
def test_stride(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel(ctx.devices[0], [
"{[i]: 0<=i<n and (exists l: i = 2*l)}",
],
[
"a[i] = 5",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), fills_entire_output=False)
def test_domain_dependency_via_existentially_quantified_variable(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel(ctx.devices[0], [
"{[i]: 0<=i<n }",
"{[k]: k=i and (exists l: k = 2*l) }",
],
[
"a[i] = 5 {id=set}",
"a[k] = 6 {dep=set}",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), )
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
# {{{ test race detection
def test_ilp_write_race_detection_global(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0], [
"[n] -> {[i,j]: 0<=i,j<n }",
],
[
"[j:ilp] a[i] = 5+i+j",
],
[
lp.GlobalArg("a", np.float32),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
from loopy.check import WriteRaceConditionError
import pytest
with pytest.raises(WriteRaceConditionError):
list(lp.generate_loop_schedules(knl))
def test_ilp_write_race_detection_local(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<=i,j<16 }",
[
"[i:l.0, j:ilp] <> a[i] = 5+i+j",
],
[])
from loopy.check import WriteRaceConditionError
import pytest
with pytest.raises(WriteRaceConditionError):
list(lp.generate_loop_schedules(knl))
def test_ilp_write_race_detection_private(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[j]: 0<=j<16 }",
[
"[j:ilp] <> a = 5+j",
],
[])
from loopy.check import WriteRaceConditionError
import pytest
with pytest.raises(WriteRaceConditionError):
list(lp.generate_loop_schedules(knl))
# }}}
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: foldmethod=marker