Newer
Older
from __future__ import division
__copyright__ = "Copyright (C) 2012 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy as np
import loopy as lp
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
__all__ = ["pytest_generate_tests",
"cl" # 'cl.create_some_context'
]
def test_type_inference_no_artificial_doubles(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<n}",
"""
<> bb = a[i] - b[i]
c[i] = bb
""",
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.GlobalArg("c", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1")
for k in lp.generate_loop_schedules(knl):
code = lp.generate_code(k)
assert "double" not in code
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def test_simple_side_effect(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<=i,j<100}",
"""
a[i] = a[i] + 1
""",
[lp.GlobalArg("a", np.float32, shape=(100,))]
)
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
print gen_knl
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
def test_nonsense_reduction(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
"""
a[i] = sum(i, 2)
""",
[lp.GlobalArg("a", np.float32, shape=(100,))]
)
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl))
def test_owed_barriers(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i]"
],
[lp.GlobalArg("a", np.float32, shape=(100,))]
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
Andreas Klöckner
committed
def test_wg_too_small(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i] {id=copy}"
Andreas Klöckner
committed
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
Andreas Klöckner
committed
local_sizes={0: 16})
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
try:
lp.CompiledKernel(ctx, gen_knl)
Andreas Klöckner
committed
except RuntimeError, e:
assert "implemented and desired" in str(e)
pass # expected!
else:
assert False # expecting an error
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def test_join_inames(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<=i,j<16}",
[
"b[i,j] = 2*a[i,j]"
],
[
lp.GlobalArg("a", np.float32, shape=(16, 16,)),
lp.GlobalArg("b", np.float32, shape=(16, 16,))
],
)
ref_knl = knl
knl = lp.add_prefetch(knl, "a", sweep_inames=["i", "j"])
knl = lp.join_inames(knl, ["a_dim_0", "a_dim_1"])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def test_divisibility_assumption(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"[n] -> {[i]: 0<=i<n}",
[
"b[i] = 2*a[i]"
],
[
lp.GlobalArg("a", np.float32, shape=("n",)),
lp.GlobalArg("b", np.float32, shape=("n",)),
lp.ValueArg("n", np.int32),
],
assumptions="n>=1 and (exists zz: n = 16*zz)")
ref_knl = knl
knl = lp.split_iname(knl, "i", 16)
for k in lp.generate_loop_schedules(knl):
code = lp.generate_code(k)
assert "if" not in code
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen,
parameters={"n": 16**3})
def test_multi_cse(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i] <float32> z[i] = a[i] + a[i]**2"
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
local_sizes={0: 16})
knl = lp.split_iname(knl, "i", 16, inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", [])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
def test_stencil(ctx_factory):
ctx = ctx_factory()
# n=32 causes corner case behavior in size calculations for temprorary (a
# non-unifiable, two-constant-segments PwAff as the base index)
n = 256
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < %d}" % n,
"a_offset(ii, jj) := a[ii+1, jj+1]",
"z[i,j] = -2*a_offset(i,j)"
" + a_offset(i,j-1)"
" + a_offset(i,j+1)"
" + a_offset(i-1,j)"
" + a_offset(i+1,j)"
lp.GlobalArg("a", np.float32, shape=(n+2,n+2,)),
lp.GlobalArg("z", np.float32, shape=(n+2,n+2,))
def variant_1(knl):
knl = lp.split_iname(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"])
for variant in [variant_1]:
kernel_gen = lp.generate_loop_schedules(variant(knl),
loop_priority=["i_outer", "i_inner_0", "j_0"])
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen,
fills_entire_output=False, print_ref_code=True,
op_count=[n*n], op_label=["cells"])
def test_eq_constraint(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < 32}",
[
"a[i] = b[i]"
],
[
lp.GlobalArg("a", np.float32, shape=(1000,)),
lp.GlobalArg("b", np.float32, shape=(1000,))
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0")
knl = lp.split_iname(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for knl in kernel_gen:
print lp.generate_code(knl)
def test_argmax(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
order = "C"
n = 10000
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<%d}" % n,
[
"<> result = argmax(i, fabs(a[i]))",
"max_idx = result.index",
"max_val = result.value",
],
[
lp.GlobalArg("a", dtype, shape=(n,), order=order),
lp.GlobalArg("max_idx", np.int32, shape=(), order=order),
lp.GlobalArg("max_val", dtype, shape=(), order=order),
])
a = np.random.randn(10000).astype(dtype)
cknl = lp.CompiledKernel(ctx, knl)
evt, (max_idx, max_val) = cknl(queue, a=a, out_host=True)
assert max_val == np.max(np.abs(a))
assert max_idx == np.where(np.abs(a)==max_val)[-1]
def make_random_value():
from random import randrange, uniform
v = randrange(3)
if v == 0:
while True:
z = randrange(-1000, 1000)
if z:
return z
elif v == 1:
return uniform(-10, 10)
else:
cval = uniform(-10, 10) + 1j*uniform(-10, 10)
if randrange(0, 2) == 0:
return np.complex128(cval)
else:
return np.complex128(cval)
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
def make_random_expression(var_values, size):
from random import randrange
import pymbolic.primitives as p
v = randrange(1500)
size[0] += 1
if v < 500 and size[0] < 40:
term_count = randrange(2, 5)
if randrange(2) < 1:
cls = p.Sum
else:
cls = p.Product
return cls(tuple(
make_random_expression(var_values, size)
for i in range(term_count)))
elif v < 750:
return make_random_value()
elif v < 1000:
var_name = "var_%d" % len(var_values)
assert var_name not in var_values
var_values[var_name] = make_random_value()
return p.Variable(var_name)
elif v < 1250:
# Cannot use '-' because that destroys numpy constants.
return p.Sum((
make_random_expression(var_values, size),
- make_random_expression(var_values, size)))
elif v < 1500:
# Cannot use '/' because that destroys numpy constants.
return p.Quotient(
make_random_expression(var_values, size),
make_random_expression(var_values, size))
def generate_random_fuzz_examples(count):
for i in xrange(count):
size = [0]
var_values = {}
expr = make_random_expression(var_values, size)
yield expr, var_values
def test_fuzz_code_generator(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
#from expr_fuzz import get_fuzz_examples
for expr, var_values in generate_random_fuzz_examples(50):
#for expr, var_values in get_fuzz_examples():
from pymbolic import evaluate
true_value = evaluate(expr, var_values)
def get_dtype(x):
if isinstance(x, (complex, np.complexfloating)):
return np.complex128
else:
return np.float64
knl = lp.make_kernel(ctx.devices[0], "{ : }",
[lp.Instruction(None, "value", expr)],
[lp.GlobalArg("value", np.complex128, shape=())]
+ [
for name, val in var_values.iteritems()
])
ck = lp.CompiledKernel(ctx, knl)
evt, (lp_value,) = ck(queue, out_host=True, **var_values)
err = abs(true_value-lp_value)/abs(true_value)
if abs(err) > 1e-10:
print "---------------------------------------------------------------------"
print "WRONG: rel error=%g" % err
print "true=%r" % true_value
print "loopy=%r" % lp_value
print "---------------------------------------------------------------------"
print ck.code
print "---------------------------------------------------------------------"
print var_values
print "---------------------------------------------------------------------"
print repr(expr)
print "---------------------------------------------------------------------"
print expr
print "---------------------------------------------------------------------"
1/0
Andreas Klöckner
committed
def test_empty_reduction(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<20}",
Andreas Klöckner
committed
],
[
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, (20,)),
])
cknl = lp.CompiledKernel(ctx, knl)
evt, (a,) = cknl(queue)
assert (a.get() == 0).all()
Andreas Klöckner
committed
def test_nested_dependent_reduction(ctx_factory):
Andreas Klöckner
committed
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
Andreas Klöckner
committed
"{[j]: 0<=j<i+sumlen}"
],
[
"<> sumlen = l[i]",
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("l", np.int32, ("n",)),
Andreas Klöckner
committed
])
cknl = lp.CompiledKernel(ctx, knl)
n = 330
l = np.arange(n, dtype=np.int32)
evt, (a,) = cknl(queue, l=l, n=n, out_host=True)
tgt_result = (2*l-1)*2*l/2
assert (a == tgt_result).all()
Andreas Klöckner
committed
def test_dependent_loop_bounds(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
[
"<> row_len = a_rowstarts[i+1] - a_rowstarts[i]",
"ax[i] = sum(jj, a_values[a_rowstarts[i]+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_2(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_start = a_rowstarts[i]",
"<> row_len = a_rowstarts[i+1] - row_start",
"ax[i] = sum(jj, a_values[row_start+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_3(ctx_factory):
# The point of this test is that it shows a dependency between
# domains that is exclusively mediated by the row_len temporary.
# It also makes sure that row_len gets read before any
# conditionals use it.
Andreas Klöckner
committed
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_len = a_row_lengths[i]",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_row_lengths", np.int32),
lp.GlobalArg("a", dtype, shape=("n,n"), order="C"),
Andreas Klöckner
committed
])
assert knl.parents_per_domain()[1] == 0
knl = lp.split_iname(knl, "i", 128, outer_tag="g.0",
Andreas Klöckner
committed
inner_tag="l.0")
Andreas Klöckner
committed
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
knl_bad = lp.split_iname(knl, "jj", 128, outer_tag="g.1",
inner_tag="l.1")
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl_bad))
def test_independent_multi_domain(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[j]: 0<=j<n}",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
lp.GlobalArg("b", dtype, shape=("n"), order="C"),
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0",
knl = lp.split_iname(knl, "j", 16, outer_tag="g.0",
assert knl.parents_per_domain() == 2*[None]
n = 50
cknl = lp.CompiledKernel(ctx, knl)
evt, (a, b) = cknl(queue, n=n, out_host=True)
assert a.shape == (50,)
assert b.shape == (50,)
def test_bare_data_dependency(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"[znirp] -> {[i]: 0<=i<znirp}",
],
[
"<> znirp = n",
"a[i] = 1",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
])
cknl = lp.CompiledKernel(ctx, knl)
n = 20000
evt, (a,) = cknl(queue, n=n, out_host=True)
assert a.shape == (n,)
assert (a == 1).all()
Andreas Klöckner
committed
def test_equality_constraints(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
knl = lp.make_kernel(ctx.devices[0], [
"[n] -> {[i,j]: 0<=i,j<n }",
"{[k]: k =i+5 and k < n}",
],
"a[i,j] = 5 {id=set_all}",
"a[i,k] = 22 {dep=set_all}",
lp.GlobalArg("a", dtype, shape="n, n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
name="equality_constraints", assumptions="n>=1")
seq_knl = knl
knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
#print knl
#print knl.domains[0].detect_equalities()
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), print_ref_code=True)
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
def test_stride(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel(ctx.devices[0], [
"{[i]: 0<=i<n and (exists l: i = 2*l)}",
],
[
"a[i] = 5",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), fills_entire_output=False)
def test_domain_dependency_via_existentially_quantified_variable(ctx_factory):
dtype = np.float32
ctx = ctx_factory()
order = "C"
n = 10
knl = lp.make_kernel(ctx.devices[0], [
"{[i]: 0<=i<n }",
"{[k]: k=i and (exists l: k = 2*l) }",
],
[
"a[i] = 5 {id=set}",
"a[k] = 6 {dep=set}",
],
[
lp.GlobalArg("a", dtype, shape="n", order=order),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
seq_knl = knl
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen, dict(n=n))
lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
parameters=dict(n=n), )
# {{{ test race detection
def test_ilp_write_race_detection_global(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0], [
"[n] -> {[i,j]: 0<=i,j<n }",
],
[
"[j:ilp] a[i] = 5+i+j",
],
[
lp.GlobalArg("a", np.float32),
lp.ValueArg("n", np.int32, approximately=1000),
],
assumptions="n>=1")
from loopy.check import WriteRaceConditionError
import pytest
with pytest.raises(WriteRaceConditionError):
list(lp.generate_loop_schedules(knl))
def test_ilp_write_race_avoidance_local(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"[i:l.0, j:ilp] <> a[i] = 5+i+j",
],
[])
for k in lp.generate_loop_schedules(knl):
assert k.temporary_variables["a"].shape == (16,17)
def test_ilp_write_race_avoidance_private(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[j]: 0<=j<16 }",
[
"[j:ilp] <> a = 5+j",
],
[])
for k in lp.generate_loop_schedules(knl):
assert k.temporary_variables["a"].shape == (16,)
# }}}
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])
# vim: foldmethod=marker