Newer
Older
from __future__ import division
import numpy as np
import loopy as lp
import pyopencl as cl
from pyopencl.tools import pytest_generate_tests_for_pyopencl \
as pytest_generate_tests
__all__ = ["pytest_generate_tests",
"cl" # 'cl.create_some_context'
]
def test_owed_barriers(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i]"
],
[lp.GlobalArg("a", np.float32, shape=(100,))]
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
Andreas Klöckner
committed
def test_wg_too_small(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i:l.0] <float32> z[i] = a[i]"
],
[lp.GlobalArg("a", np.float32, shape=(100,))],
Andreas Klöckner
committed
local_sizes={0: 16})
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
try:
lp.CompiledKernel(ctx, gen_knl)
Andreas Klöckner
committed
except RuntimeError, e:
assert "implemented and desired" in str(e)
pass # expected!
else:
assert False # expecting an error
def test_multi_cse(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<100}",
[
"[i] <float32> z[i] = a[i] + a[i]**2"
[lp.GlobalArg("a", np.float32, shape=(100,))],
local_sizes={0: 16})
knl = lp.split_dimension(knl, "i", 16, inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", [])
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for gen_knl in kernel_gen:
compiled = lp.CompiledKernel(ctx, gen_knl)
print compiled.code
def test_stencil(ctx_factory):
ctx = ctx_factory()
# n=32 causes corner case behavior in size calculations for temprorary (a
# non-unifiable, two-constant-segments PwAff as the base index)
n = 256
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < %d}" % n,
"a_offset(ii, jj) := a[ii+1, jj+1]",
"z[i,j] = -2*a_offset(i,j)"
" + a_offset(i,j-1)"
" + a_offset(i,j+1)"
" + a_offset(i-1,j)"
" + a_offset(i+1,j)"
lp.GlobalArg("a", np.float32, shape=(n+2,n+2,)),
lp.GlobalArg("z", np.float32, shape=(n+2,n+2,))
def variant_1(knl):
knl = lp.split_dimension(knl, "i", 16, outer_tag="g.1", inner_tag="l.1")
knl = lp.split_dimension(knl, "j", 16, outer_tag="g.0", inner_tag="l.0")
knl = lp.add_prefetch(knl, "a", ["i_inner", "j_inner"])
for variant in [variant_1]:
kernel_gen = lp.generate_loop_schedules(variant(knl),
loop_priority=["i_outer", "i_inner_0", "j_0"])
kernel_gen = lp.check_kernels(kernel_gen)
lp.auto_test_vs_ref(ref_knl, ctx, kernel_gen,
fills_entire_output=False, print_ref_code=True,
op_count=[n*n], op_label=["cells"])
def test_eq_constraint(ctx_factory):
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
"{[i,j]: 0<= i,j < 32}",
[
"a[i] = b[i]"
],
[
lp.GlobalArg("a", np.float32, shape=(1000,)),
lp.GlobalArg("b", np.float32, shape=(1000,))
])
knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0")
knl = lp.split_dimension(knl, "i_inner", 16, outer_tag=None, inner_tag="l.0")
kernel_gen = lp.generate_loop_schedules(knl)
kernel_gen = lp.check_kernels(kernel_gen)
for knl in kernel_gen:
print lp.generate_code(knl)
def test_argmax(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
order = "C"
n = 10000
knl = lp.make_kernel(ctx.devices[0],
"{[i]: 0<=i<%d}" % n,
[
"<> result = argmax(i, fabs(a[i]))",
"max_idx = result.index",
"max_val = result.value",
],
[
lp.GlobalArg("a", dtype, shape=(n,), order=order),
lp.GlobalArg("max_idx", np.int32, shape=(), order=order),
lp.GlobalArg("max_val", dtype, shape=(), order=order),
])
a = np.random.randn(10000).astype(dtype)
cknl = lp.CompiledKernel(ctx, knl)
evt, (max_idx, max_val) = cknl(queue, a=a, out_host=True)
assert max_val == np.max(np.abs(a))
assert max_idx == np.where(np.abs(a)==max_val)[-1]
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def make_random_value():
from random import randrange, uniform
v = randrange(3)
if v == 0:
while True:
z = randrange(-1000, 1000)
if z:
return z
elif v == 1:
return uniform(-10, 10)
else:
return uniform(-10, 10) + 1j*uniform(-10, 10)
def make_random_expression(var_values, size):
from random import randrange
import pymbolic.primitives as p
v = randrange(1500)
size[0] += 1
if v < 500 and size[0] < 40:
term_count = randrange(2, 5)
if randrange(2) < 1:
cls = p.Sum
else:
cls = p.Product
return cls(tuple(
make_random_expression(var_values, size)
for i in range(term_count)))
elif v < 750:
return make_random_value()
elif v < 1000:
var_name = "var_%d" % len(var_values)
assert var_name not in var_values
var_values[var_name] = make_random_value()
return p.Variable(var_name)
elif v < 1250:
return make_random_expression(var_values, size) - make_random_expression(var_values, size)
elif v < 1500:
return make_random_expression(var_values, size) / make_random_expression(var_values, size)
def generate_random_fuzz_examples(count):
for i in xrange(count):
size = [0]
var_values = {}
expr = make_random_expression(var_values, size)
yield expr, var_values
def test_fuzz_code_generator(ctx_factory):
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
#from expr_fuzz import get_fuzz_examples
for expr, var_values in generate_random_fuzz_examples(20):
#for expr, var_values in get_fuzz_examples():
from pymbolic import evaluate
true_value = evaluate(expr, var_values)
def get_dtype(x):
if isinstance(x, complex):
return np.complex128
else:
return np.float64
knl = lp.make_kernel(ctx.devices[0], "{ : }",
[lp.Instruction(None, "value", expr)],
[lp.GlobalArg("value", np.complex128, shape=())]
+ [
for name, val in var_values.iteritems()
])
ck = lp.CompiledKernel(ctx, knl)
evt, (lp_value,) = ck(queue, out_host=True, **var_values)
err = abs(true_value-lp_value)/abs(true_value)
if abs(err) > 1e-10:
print "---------------------------------------------------------------------"
print "WRONG: rel error=%g" % err
print "true=%r" % true_value
print "loopy=%r" % lp_value
print "---------------------------------------------------------------------"
print ck.code
print "---------------------------------------------------------------------"
print var_values
print "---------------------------------------------------------------------"
print repr(expr)
print "---------------------------------------------------------------------"
print expr
print "---------------------------------------------------------------------"
1/0
Andreas Klöckner
committed
def test_empty_reduction(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<20}",
"{[j]: 0<=j<0}"
],
[
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, (20,)),
])
cknl = lp.CompiledKernel(ctx, knl)
evt, (a,) = cknl(queue)
assert (a.get() == 0).all()
Andreas Klöckner
committed
def test_nested_dependent_reduction(ctx_factory):
Andreas Klöckner
committed
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
Andreas Klöckner
committed
"{[j]: 0<=j<i+sumlen}"
],
[
"<> sumlen = l[i]",
"a[i] = sum(j, j)",
],
[
lp.GlobalArg("a", dtype, ("n",)),
lp.GlobalArg("l", np.int32, ("n",)),
Andreas Klöckner
committed
])
cknl = lp.CompiledKernel(ctx, knl)
n = 330
l = np.arange(n, dtype=np.int32)
evt, (a,) = cknl(queue, l=l, n=n, out_host=True)
tgt_result = (2*l-1)*2*l/2
assert (a == tgt_result).all()
Andreas Klöckner
committed
def test_dependent_loop_bounds(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
[
"<> row_len = a_rowstarts[i+1] - a_rowstarts[i]",
"ax[i] = sum(jj, a_values[a_rowstarts[i]+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_2(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_start = a_rowstarts[i]",
"<> row_len = a_rowstarts[i+1] - row_start",
"ax[i] = sum(jj, a_values[row_start+jj])",
],
[
lp.GlobalArg("a_rowstarts", np.int32),
lp.GlobalArg("a_indices", np.int32),
lp.GlobalArg("a_values", dtype),
lp.GlobalArg("x", dtype),
lp.GlobalArg("ax", dtype),
Andreas Klöckner
committed
],
assumptions="n>=1 and row_len>=1")
knl = lp.split_dimension(knl, "i", 128, outer_tag="g.0",
inner_tag="l.0")
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
def test_dependent_loop_bounds_3(ctx_factory):
# The point of this test is that it shows a dependency between
# domains that is exclusively mediated by the row_len temporary.
# It also makes sure that row_len gets read before any
# conditionals use it.
Andreas Klöckner
committed
dtype = np.dtype(np.float32)
ctx = ctx_factory()
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[jj]: 0<=jj<row_len}",
],
Andreas Klöckner
committed
[
"<> row_len = a_row_lengths[i]",
Andreas Klöckner
committed
],
[
lp.GlobalArg("a_row_lengths", np.int32),
lp.GlobalArg("a", dtype, shape=("n,n"), order="C"),
Andreas Klöckner
committed
])
assert knl.parents_per_domain()[1] == 0
Andreas Klöckner
committed
knl = lp.split_dimension(knl, "i", 128, outer_tag="g.0",
inner_tag="l.0")
Andreas Klöckner
committed
cknl = lp.CompiledKernel(ctx, knl)
print "---------------------------------------------------"
cknl.print_code()
print "---------------------------------------------------"
knl_bad = lp.split_dimension(knl, "jj", 128, outer_tag="g.1",
inner_tag="l.1")
import pytest
with pytest.raises(RuntimeError):
list(lp.generate_loop_schedules(knl_bad))
def test_independent_multi_domain(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"{[i]: 0<=i<n}",
"{[j]: 0<=j<n}",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
lp.GlobalArg("b", dtype, shape=("n"), order="C"),
])
knl = lp.split_dimension(knl, "i", 16, outer_tag="g.0",
inner_tag="l.0")
knl = lp.split_dimension(knl, "j", 16, outer_tag="g.0",
inner_tag="l.0")
assert knl.parents_per_domain() == 2*[None]
n = 50
cknl = lp.CompiledKernel(ctx, knl)
evt, (a, b) = cknl(queue, n=n, out_host=True)
assert a.shape == (50,)
assert b.shape == (50,)
def test_bare_data_dependency(ctx_factory):
dtype = np.dtype(np.float32)
ctx = ctx_factory()
queue = cl.CommandQueue(ctx)
knl = lp.make_kernel(ctx.devices[0],
[
"[znirp] -> {[i]: 0<=i<znirp}",
],
[
"<> znirp = n",
"a[i] = 1",
],
[
lp.GlobalArg("a", dtype, shape=("n"), order="C"),
])
cknl = lp.CompiledKernel(ctx, knl)
n = 20000
evt, (a,) = cknl(queue, n=n, out_host=True)
assert a.shape == (n,)
assert (a == 1).all()
Andreas Klöckner
committed
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
exec(sys.argv[1])
else:
from py.test.cmdline import main
main([__file__])